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1

CHAPTER 1

INTRODUCTION

In this chapter, we will first introduce the motivation of this work. Objectives are described

in details, followed by the contributions and the outline of the rest of the thesis.

1.1 Motivation
Sustainable Computing is an application of the political concept of sustainability to the IT

world [96]. In sustainable computing, designers of computer systems, ranging from small mo-

bile devices to massive data centers, emphasize obtaining a sustainable level of environmental

and societal costs as a first-order design principle. These cost may result from the computer

systems manufacturing, operation, and disposal.

Among all the factors in sustainable computing that contribute to system operational costs,

power dissipation and energy consumption are fundamental in modern computer systems [112].

Their effects can be found across computational domains, including data center design [94],

enterprise level server design [93], battery life management on a smart phone [23, 102, 113],

and circuit layout on a microprocessor. As an indispensable component of a computer system,

software has a profound impact on power dissipation [52]. The number of workloads running

on computer systems grows rapidly. For example, there are more than 500,000 applications

available for download on iOS in 2011 [140]. Nonetheless, the effects of software on efficient

system design is unclear and the challenges are presented as follows:

First of all, different from conventional performance metric, power dissipation is difficult

to measure because hardware instrumentation is usually required; thus, the prerequisite for

power efficient design is an accurate and verbose power estimation [45, 85, 114, 147]. A better

understanding of the power dissipation of a system will enable more power-saving opportuni-

ties [66]. However, most existing approaches do not expose sufficient information to end-users
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and software developers [5, 12, 28, 74, 123, 143]. Hence, information scarcity of dynamic

power dissipation impedes the progress of efficient software design. The challenge is that there

is a gap between the power dissipation of hardware and the applications running on it. On

the other hand of the spectrum, high performance is a sufficient but not necessary condition to

high power dissipation. Even though power models estimate power dissipation of a system,

the optimization points is unclear to the application developers. Poorly designed code sections

have high power dissipation but do not necessarily produce high performance [116]. As a re-

sult, energy is wasted. Based on this observation, we envision software power optimization

has two-fold: static and dynamic. Statically, with more detailed information on the causes of

power dissipation of workloads [131], software developers will be able to leverage algorithms

and implementations to achieve better energy efficiency. Obviously, software developers are

the best candidates who can identify inefficiency in a piece of software. Tuning applications for

power and energy saving or energy-performance tradeoff is a major concern for power-aware

computing. Dynamically, fine-grained power management posts challenges on software power

behavior analysis in details. The subtle relationship between software and hardware resource

usage eliminates the possibility of mentioning each one of them without considering the other.

In this dissertation, we undertake a novel approach that profiles the workload power dissipa-

tion at a fine-grained level. By leveraging this technique, we optimizes to improve the energy

efficiency of a software based on a new metric, and involves software in the process of power

management schemes of the operating systems.

1.2 Objectives
Given the challenges listed above, our long term objective is to integrate software into

the loop of efficient system design, which exposes software power dissipation information to

underling operating systems. Our short term goal is to investigate the enabling technologies

for efficient software/workload design and fine-grained power management.
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1. Analyze component power dissipation of a computer system. The first step in the study

is to break down the power dissipation of a computer system, which gives a detailed

overview of static power vs. dynamic power for each computer component. The rest of

the objectives are based on the findings of our first step.

2. Investigate power dissipation in association with workload execution. In order to get

the detailed profiling information, not only we will model the power dissipation of the

major components in a system, but also develop a mechanism to distinguish the power

dissipation of each execution phase in the software.

3. Automate the process of workload power analysis. In order to analyze power dissipation

of workload in practical situations, an accuracy power model is inadequate. The profiling

process needs to generate minimized instrumentation overhead and scalable for large

software.

4. Model relationship between energy consumption of a workload and the system config-

urations using the power profiling techniques described above. While power analysis

provides runtime workload power dissipation information, different system configura-

tions change power dissipation and energy consumption in a subtle way.

5. Design and implement a workload aware mechanism to achieve energy efficiency. The

lack of information of workload and computer architectures results in poor efficiency.

System power management schemes need to consider the behavior of running software/-

workloads. Furthermore, power management schemes need to be adaptive if the behavior

varies. We propose to model parallel program in terms of C (Concurrency), P (Power

dissipation), and T (Execution time) to achieve better overall system energy efficiency.

The expected output of this part is a power management scheme that adjusts system

components mode, such as DVFS and concurrency level, based on workload and system

characteristics.
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Power-aware multicore systems 
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systems 
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Figure 1.1: Overview of our approach.

1.3 Our Approach
Over all, our approach can be divided into four parts, as described in Figure 1.1. We will

describe each section of it in the following sub sections.

1.3.1 Component power dissipation analysis

In this part of the thesis, in order to first understand modern computer system design in

terms of power usage, we analyze two computer systems that have been built over periods.

The power dissipation of the computer system or a single computer device includes two parts,

the static power and the dynamic power. The static power of a computer device is the power

dissipated on this device when it is in idle state; the dynamic power of a computer component

is the extra power dissipated on this device when it is active. More specifically, we define the

idle state of disk as when it is spinning but no data access operations. The sum of the static

power and the dynamic power is the total power dissipated by this component. Similarly, the

static power of the computer system is the basic power needed to maintain the running of the

system when the system is idle; the dynamic power is the extra power needed when executing

the tasks. More clearly, we define the idle state of the computer system as when the percentage



www.manaraa.com

5

of CPU utilization is about zero and all the other components are in idle state.

Static power accounts for a very large ratio of the total power dissipation of the computer

system. When the system is idle, most of the energy used in this state is not considered as used

for computing. Thus, one important task of power management is try to decrease the static

power of the components and the computer system. For example, by using clock gating most

sub-units of CPU can work in the low power mode when it is not used. In this way, the static

power of the CPU is decreased. In addition, new memory refresh strategy [126] makes the

memory could be refreshed with lower power compared with memory access operation. All of

these methods try to decrease the waste of energy generated by static power. To decrease the

dynamic power, people try to design low power circuits and use new energy saving materials,

such as phase-change memory (PCM) [82]. PCM uses a special kind of non-volatile storage

material which do not need to refresh to maintain the data in the memory. Software method

aims to improve the energy usage efficiency by improving the executing efficiency and making

different power saving strategies for the system.

Although, the aforementioned work have been done in power management area, the com-

puter systems are still consuming an ever increasing amount of energy and the power dissipa-

tion of computer system do not decrease too much. Where does the power go in a computer

system is a question that grabs more and more people’s interests but have not yet been answered

clearly. It is important to realize the power profile of the computer system. Thus, people get

to know which area deserves more research work. Moreover, what is the trend of power man-

agement of the computer system? Finally, whether there are some implications, which can

serve as guidance for future research? The goal of this part of the work is attempt to answer

these questions. First, we give a clearly view of the power profile in the computer systems.

Second, through the experiment we find some observations, which tell us the trend of power

management in the last several years. Finally, we find some implications that are helpful for

future research. For example, CPU utilization can not accurately reflect power dissipation of
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the CPU. We define CPU utilization as the time spent in executing the task set, as opposite to

the time spent to execute idle task, such as I/O wait.

1.3.2 Power analysis and modeling for power-aware multicore systems

In this subsection, our primary goal is to model and analyze power dissipation of a computer

system in association with the resource usage information. Many previous efforts have focused

on computer system power measurements and profiling [10, 15][28, 46, 71, 81, 84]. Actually,

power dissipation of a single computer system can be broken down into several pieces with

each piece representing a component, such as CPU or memory.

Furthermore, power dissipation of each component consists of two parts: static power and

dynamic power. The former could be described as the basic power supplied to maintain this

component in its operational state. The latter is the additional power dissipation for running

a specific task. For years, it has been well-acknowledged that dynamic power is roughly de-

termined by utilization rates, especially for CPUs. However, the experimental results show

that, for the CPU dynamic power, the estimation error rate of using this method can be as

high as 33.33% [27]. On the other hand, understanding the power dissipation behavior of a

specific software/application is the key to write efficient software and design energy-efficient

computer systems. Therefore, we need a more accurate model to capture the power dissipation

of computer systems.

Usually, there are four ways to estimate power dissipation: cycle-level system simulators,

instruction-level modeling, software-function-level macro-modeling, and PMCs-based model-

ing. Cycle-level system simulators are time costly while providing more detailed informa-

tion [17, 147]. Instruction level modeling achieves simplicity and accuracy on embedded sys-

tems, but it is not realistic if we apply it to superscalar processors with a large number of

instructions. For example, IA-32 ISA contains 331 different instructions, with 109561 (3312)

instruction combinations if considering the inter-instruction effects. Software-function-level

macro-modeling techniques associate power dissipation with application function sub-routines
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and establish power models on top of application characteristics, such as algorithm complex-

ity [129]. However, such information sometimes is inherently unavailable for end users. More-

over, the static feature of this method prevents its utility when we consider advanced run-time

power management. Analytical power modeling based on performance monitoring counters

(PMCs) enables run-time software power estimation [28, 72, 81, 107]. Nevertheless, for a

given processor, the power model based on PMCs is limited by the types of available event

counters and the maximum number of counters that can be read simultaneously. For instance,

most Intel processors only support sampling two counters per core concurrently. Regarding

the power estimation utilizing PMCs, however, we also need to notice that accuracy highly de-

pends on two sets of PMCs: those PMCs appearing in power models and those PMCs available

on targeting platforms. Insufficient information representing the power characteristics of the

microarchitecture will yield low accuracy.

Software contributes to a considerable portion of the total power of a computer system [27,

8, 116]. Hence, it is very important to find out how much power has been dissipated by a

specific software component in order to design sustainable computer systems. Power dissi-

pation, arguably speaking, is a fundamental aspect of software nowadays. On one hand, the

total energy consumption of completing a task is power accumulation over time. Thus, power

dissipation is a direct contributor to producing an energy profile. On the other hand, in some

particular circumstances, controlling power dissipation provides more flexibility for systems.

For example, temperature can be altered by restricting power dissipation. Besides, some in-

frastructures add ”power envelop” as one of the constraints. For instance, it is crucial for data

centers serving millions of people to maintain the whole power budget under a certain limit for

power supply protection (huge current draw may damage transistors). As a result, it is worth to

investigating the run time power dissipation of an application and the associated source code

for sustainable computing point of view. We focus our discussion on identifying run-time fac-

tors that determine the power dissipation of processors for computation intensive workloads on
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power-aware multicore computer systems. Concretely, we model power dissipation in a two-

level manner to reserve simplicity and accuracy. More importantly, we map power dissipation

to software blocks at runtime by building SPAN libraries and interfaces. Specifically, the work

presented in this paper includes the following contributions.

1.3.3 Source code power dissipation profiling

Power dissipation of a piece of software is a basic property that needs software developers

to detect, tune, and optimize. By designing the proposed function-level power profiling tech-

nique, we are able to detect software ”hotspots” [25], which contains power intensive code and

optimize it as a software developer if necessary. Usually, the higher the performance metrics

a code section has, the more power-hungry it is. However, this is not always the case. Nev-

ertheless, some hotspots have negative effects towards the operating machine, such as causing

high temperature. The results, however, do not reflect the causes of high power dissipation.

For example, while high CPU utilization will definitely lead to high power dissipation, the

cause not necessarily is poorly written code. On the opposite, this method could be known as

HUGI (hurry up and go idle) or race idle. Thus, it is reasonable to reveal the real causes of

high power dissipation from the software point of view and optimize the code section show-

ing poor power efficiency. The benefits of the proposed research include the follows: first of

all, we are able to reveal power efficiency of a piece of software application at a fine-grained

level. In addition, the tool we design will be able to make suggestions on power deduction

according to the power efficiency of different section of code [103]. We will deploy a two

level analysis approach, which becomes full-fledged function level power analysis tools that

integrate hardware activity indicators. The input contains various operating system statistics,

such as the contents under procfs in UNIX-like operating systems. The output expected is a

list of software functions that are estimated to have high power dissipation. We will utilize

PMCs as major resources for such information. Example inputs are LLC misses, hard page

faults et al. At the first stage, we will focus on general purpose computers and then optimize
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for resources-constricted systems. In order to get the detailed profiling information, we will

develop a mechanism to distinguish the power dissipation of each function in the software. We

design SPAN, which specifies a set of APIs to be inserted into the source code. Alternatively,

to enable automatic source code instrumentation, we will utilize compiler techniques to insert

profiling code before and after each function in source code. The expected outcome includes

an open source function level power profiling tool, Safari. SPAN and Safari estimate function

level power dissipation based on power models.

1.3.4 Software/workload energy-efficient configuration selection

Given the estimated power behavior of software, it is urgent to develop an on-the-fly ap-

proach of software-behavior-aware power management scheme. There is a gap between power

management schemes of a operating system and the software application (workload) running

on it. The existing power management approaches mainly speculate the behavior of a work-

load, which usually generate either inaccurate or coarse guidance toward the operating system.

If the behavior of a workload are profiled in advance, we are able to achieve more timely

and fine-grained power management schemes. We will utilize the tools that extending from

SPAN [137] to generate profiling information about benchmark software with detailed in-

formation about its resources usage and power dissipation information. The data are mainly

from PMCs. At runtime, the profiling data from the target software are compared with a pre-

collected data which contains matrices defining possible power saving opportunities for DVFS,

thread mapping, et al. Specifically, we model the energy efficiency as three tuples, C (Concur-

rency), P (Power dissipation), and T (Execution time) for a parallel workload, namely, CPT

model. Base on the model and runtime profiling information, the system will select the optimal

system configuration for the target software.

1.4 Summary of contributions
In the summary, the main contributions of this dissertation are as follows:
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1. We describe our power measurement method in detail. In addition, we provide a fine-

grain power profile of the computer system. Then, we study the trend of power man-

agement of the computer system in the last several years. Finally, we derive out eight

implications from our observations, which are important to the energy efficient system

design in the future.

2. We propose a two-level power model for power-aware multicore computer systems. The

novelty of the proposed model is two-fold. First, we minimize the number of perfor-

mance counters and training benchmarks utilized in the model to achieve simplicity and

applicability. Second, we incorporate frequency in the power model to meet the require-

ments of modern DVFS techniques. The experimental results based on SPEC2008C jvm

benchmark suite show the average error rate of 5.40% across one core to six core valida-

tion.

3. We design and implement SPAN to relate power dissipation to the different portions of

an application using the proposed power model. By using SPAN, developers can easily

identify the sections of code consuming the most power in the program. Alternatively,

to enable automatic source code instrumentation, we utilize compiler techniques to in-

sert profiling code before and after each function in source code. The expected outcome

includes an open source function level power profiling tool, Safari. SPAN and Safari

estimate function level power dissipation based on power models. The experiment re-

sults show that Safari is able to produce function level profiling with limited overhead

(on average 16%) and controlled estimation error of 6.85% on average. Additionally, we

apply software power profiling on a modern MIPS architecture based multicore proces-

sor. Along with CPU, we have developed power model for memory and coprocessors.

Practically, we have proven the generality of our function level power profiling on other

platforms.
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4. We propose CPT model, a energy-efficient model to capture the relationship between

concurrency (C), power(P), execution time(T ) and workload energy efficiency. Three

case studies are used to demonstrate the usage of CPT model.

5. Based on the CPT model and power profiling technique we propose, we design mech-

anism to capture the optimal energy-efficiency for parallel workload. Execution infor-

mation using two threads is used to predict the energy consumption of different configu-

rations on a specific architecture. We use a DVFS mechanism to adjust CPU frequency

according to the workload information during the run-time given the predicted concur-

rency level and thread mapping setting. The experimental results based on a Xeon E5620

server with NPB and PARSEC benchmark suites show that the model is able to predict

the energy efficient configuration accurately for 100% tested benchmarks. An additional

10% EDP saving is obtained by using run-time DVFS on average for the entire system.

1.5 Outline
The rest of this document is organized as follows: Chapter 2 reviews the related work;

Chapter 3 analyzes the current trend of power dissipation of computer systems by systemically

measure and profile two general purpose computers; Chapter 4 proposes a power analysis and

modeling for power-aware multicore systems and SPAN - a software function level multicore

processor power analyzer. Chapter 5 describes the profiling tool Safari, which automates the

profiling process; In Chapter 6, we propose a workload energy efficiency model, CPT model,

for parallel workload by using our profiling tool; By using CPT model, we locate the optimized

system configuration in terms of energy consumption of a workload on a multicore processor

system in Chapter 7; Chapter 8 gives the conclusion of this thesis discusses the future work.

this research and the author’s publication record.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter describes the related work in each aspect: computer system power measure-

ment & profiling and energy-efficient system design. In the first part, we briefly summarize the

research on the computer system power measurement, especially hardware instrumentation so

that the readers can have a general understanding of current techniques. The second section

introduces the latest research on energy-efficient system design. With such a brief background

introduction, the readers will have a comprehensive understanding of this dissertation.

2.1 Power Measurements and Profiling
In this sub section, we describe the basic research concepts in power measurement and

hardware instrumentation.

As energy consumption becomes one of the foremost considerations in designing new com-

puter systems, power-aware system design raises a key issue in the community of computer

systems. Power measurement and profiling, which are the basis of power-aware systems, not

only can be used to evaluate power optimization techniques and to make power-performance

trade-off, but also can be used to generate critical power information for operating systems and

power-aware software. Based on hardware and software techniques used, power measurement

and profiling could be classified into three categories: hardware-based method, software-based

method, and hybrid method. Table 2.1 summarizes the classification of these previous efforts.

2.1.1 Hardware-based Method

The hardware-based methods mainly use two strategies: using meters to build a power

measurement and profiling platform or integrating power sensors into hardware architectures.



www.manaraa.com

13

Direct Power Measurement and Profiling

The first strategy uses meters to measure the currents or voltages of wires that supply power

for hardware, and then compute power dissipation with these result. This strategy is usually

used to evaluate the accuracy of software methods. In this thesis, we also use this classic

power measurement method to evaluate the accuracy of our models. One of the earliest stud-

ies of power measurement and profiling is done by Viredaz et al. on handheld computing

devices [135]. Joseph et al. use a similar method to measure the power dissipation on a

high performance processor [71, 72]. They use a group of microbenchmarks with particular

cache, bit activity, and branch prediction behaviors to evaluate performance and power trade-

off. In [75], the authors adopt the direct power measurement method; then, they measure

the power on a Cray XT4 supercomputer under several HPC workloads. Their results show

that computation-intensive benchmarks generate the highest power dissipation. Nevertheless,

memory-intensive benchmarks yield the lowest power usage. Physical measurement is fast

and objective, but this method lacks a semantic connection between measurement results and

evaluated programs [61].

Integrate Power Sensors into the System

The second strategy is usually used by high-performance servers [48, 29]. For example,

Intel uses service processor-based power-monitoring sensors to provide power information for

systems through the API called Intelligent Platform Management Interface (IPMI) [64, 48].

IBM BladeCenter and System xT M servers supply PowerExecutive solutions that enable cus-

tomers to monitor actual power draw and temperature loading information [29]. Though on-

line power-aware applications can use this method, it is difficult to yield low-level power infor-

mation because hardware circuits are too complicated to distinguish the originality of power

dissipation. In addition, power monitoring circuits also dissipate a large amount of power as

well.
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2.1.2 Software-based Method

Even though hardware-based methods are more accurate than software-based methods,

hardware cost and scalability requirements restrict their application range. In addition, dur-

ing an architecture design cycle we cannot use hardware-based method to balance power and

performance. Software-based methods use power models to estimate power dissipation. Power

models are created at different levels: circuits level, instruction level, component level, node

level, and so forth. Based on different usage stages, we summarize software-based methods

into two types: architecture-level power models, which are used to estimate power dissipation

during the architecture design stage, and system-level power models, which supply live power

information to operating system and power-aware applications.

Architecture-level Power Model

Software-based methods spring up in the area of architecture-level power estimation. Most

of the earliest work [85, 91, 17, 147, 100] in this category are based on the classic energy

equation [68]. Liu et al. estimate the power on VLSI CMOS chips [85]. Register transfer

level power model is analyzed by Marculescu et al. in [91]. Brooks et al. proposed Wattch, a

framework for analyzing and optimizing microprocessor power dissipation at the architecture-

level [17]. The power model of Wattch relies on per-cycle resource usage counts. In [147], Ye

et al. present a comprehensive framework called SimplePower, which is based on the transition

sensitive energy models. It not only can be used to evaluate the effect of high-level algorithmic,

architectural, and compilation trade-off on energy, but also provides the energy consumption

in the memory system and the on-chip buses using the analytical energy models. SoftWatt,

which models the CPU, memory hierarchy, and the low-power disk subsystem, is described

in [52]. This tool is able to identify the power hot-spots in system components as well as the

power-hungry operating system services.

The power constraints in interconnection network design were noticed by[100]. Also, this
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paper proposes the power model of routers and links and analyzes the performance of direct in-

terconnection network topologies under a fixed power constraint. Wang et al. present a power-

performance interconnection network simulator called Orion, which is capable of providing

detailed power and performance characteristics to enable rapid power-performance trade-off at

the architecture-level [136]. Eisley et al. estimate and analyze the power of CMPs by syner-

gistically considering both the processor cores and the communication fabric in a multi-core

chip [37]. Chen et al. propose SimWattch to integrate the system-level and the user-level

simulators [26].

Besides those efforts that model the power dissipation of processors, several publications [17,

149, 146, 53, 97] propose methods to estimate the power of other devices, such as hard disks,

memories, and network devices. Zedlewski et al. present Dempsy, a disk simulation environ-

ment that includes the accurate modeling of the disk power dissipation [149]. Dempsey at-

tempts to estimate the power of a specific disk stage, which includes seeking, rotation, reading,

writing, and idle-periods, with a fine-grained model. Molaro et al. also analyze the possibility

to create a disk driver power model based on disk status stages [97]. In [53], the authors build

the power model for hard disk based on the observation that a slight change on the rotation

speed of a disk has a quadratic effect on its power dissipation. In [146], Ye et al. introduce a

framework to estimate the power dissipation on the switch fabrics on network routers and pro-

pose different modeling methodologies for the node switches, internal buffers, and interconnect

wires inside switch fabric architectures.

System-level Power Model

Specialized circuit techniques are important strategies for low-power designs, but these

techniques alone are not sufficient. Higher-level strategies for reducing power dissipation

and improving energy efficiency are increasingly crucial [17]. The live power information

of systems is highly needed for designing high-level energy efficiency strategies. For example,
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Ecosystem [150] and [89], which propose the concept managing system energy as a type of re-

source, require the support from real-time power information on different levels. Furthermore,

in [134], the authors argue that the traditional operating system design should be revisited for

energy efficient usage. As part of the energy-centric operating system, energy profiles are also

needed by new power-aware scheduling algorithms [3, 77]. Ahmad et al. propose a new power-

aware scheduling algorithm based on game theory [3]. In [77], Khan et al. present a method,

which is also based on game theory, to minimize the energy consumption on computational

grids. System-level power models are built on the statistics of systems, which reflects activities

of the hardware devices.

One of the earliest research in this category is [131]. Tiwari et al. propose an instruction-

level power model for embedded processors and memories. Russell et al. present an energy

model using a constant parameter for power dissipation of a 32 bit embedded processor [114].

T. Li and L. Kurian John [84] exploit a high correlation between the instruction per cycle (IPC)

and the power dissipation, and they predict the run-time power dissipation on the OS routines

based on regression model between power and IPC. G. Contreras and M. Martonosi [28] also

discover the power-IPC correlation and use five PMCs to estimate the power of workloads

running on different CPU frequencies. Their model exhibits low percentage of error, but they

do not verify the model on multicore architectures. Bircher et al. [15] explore the run-time

events that most likely represent power dissipation. In their experiments, IPC-related metrics

are shown to be the most power-informative. Among those metrics, the upos fetched per cycle

yields the most accurate results. Other candidates are upos completed per cycle and upos

retried per cycle. Wu et al. [143] also use a number of PMCs to deploy a power model on the

Pentium 4 functional units. They measure the CPU power via a clamp-on ammeter. However,

their model is not validated under different frequencies and multicore architecture.

Dhiman et al. [34] propose an on-line power prediction system on virtualized environ-

ments. Instead of using linear regression models on PMCs, they utilize a Gaussian Mixture
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vector quantization based training and classifying. The estimation error is within 10% in most

cases. Bertran et al. [12] demonstrate an alternative approach using PMCs on the CPU power

estimation. Rather than directly deriving power models using PMCs, they propose a method

to treat each component of the CPU separately, such as FE, INT, and FP. Combining all the

training parameters, they develop a fine-grained power model. However, the training process is

too time-consuming to be extensively used in practical situation. In addition, the power model

highly depends on the microarchitecture of the CPU. Bellosa [10] demonstrates the correlation

between recorded performance events and the power dissipation from the synthetic workloads.

He shows the most effective factors of system power dissipation are: fuops/sec, uops/sec, L2

accesses/sec, and memory accesses/sec. Because he only considers the synthetic workloads,

the results could not be sufficiently applied to real applications.

In [106], Powell et al. propose a methodology to reduce the number of performance coun-

ters while maintaining certain accuracy of the model. They estimate the hardware activity

events of several microarchitectural structures; then, the authors associate the activity events

to the power dissipation of such structures. Singh et al. [123] describe an approach based on

a number of microbenchmarks which stress the particular components of a given processor ar-

chitecture. Our work differs from all these works in the way that we combine CPU frequency

scaling and multicore features in the power model, which fits the trend of microprocessor de-

sign recently.

2.1.3 Hybrid Method

Hybrid methods are also globally researched [42, 67, 46] because both hardware-based

and software-based methods have their own limitations. Flinn et al. develop a platform that

samples both the power dissipation and the system activities on a profiling computer; then,

they generate an energy profile from the data through an off-line analysis [42]. Isci et al.

build a platform using sampled multimeter data for overall power measurements and produce

per-unit power breakdowns based on the hardware performance counter readings [67]. Their
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power model uses 22 performance monitoring counters and reaches as low as 5% error rate on

the SPEC 2000 benchmarks. However, the large number of performance counters may not be

available for sampling simultaneously on some processors. For example, most Intel platforms

only support concurrent sampling of two counters. In this case, to retrieve the information from

22 counters, the program has to be run at least 11 times. Ge et al. develop a power measurement

and profiling platform to retrieve the power information from the main components, such as

the CPU, disk, memory, motherboard, and so forth [46]. Also, they propose a method to map

the measured power into the application code and analyze the energy efficiency in a multi-core

system. Isci et al. develop an experimental framework to compare the control-flow based with

the performance-monitoring-based power-phase detection techniques [65]. Their results show

that both the control-flow and the performance statistics provide useful hints of the power phase

behaviors.

Chang et al. rely on statistical sampling to help programmers evaluate the energy impact

of their design decisions [25]. In [61], they describe an evaluation infrastructure, which com-

bines the advantages of simulations and physical measurements for the OS/compiler power

and energy optimizations. In addition, this infrastructure can provide the objective evaluation

and semantic connection between the measured power/energy and the source code. Lorch et

al. design two programs: PowerMeasure, which is used to measure how much power each

component consumes in predefined state, and StateProfiler, which is used to profile how often

each component stays in a specific power state [87, 88].

2.2 Energy-Efficient Design
Given a brief background description of power measurement and profiling, we will discuss

energy efficient design in this section. Energy-efficient design though, is not a new topic. Var-

ious techniques are presented to control consumed energy. Roughly speaking, each technique

fits in one of the following categories regardless of platform.
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Hardware-based Software-based Hybrid

Itsy00 [135] Wattch [17] PowerScope [42]

Jpseph01 [71] SimplePower [147] Isci03 [67]

Kamil08 [75] SoftWatt [52] PowerPack [46]

PowerExecutive [29] Orion [136] Chang03 [25]

IMPI [64] SimWattch [26] Lorch97 [87]

Dempsey [149]

Bellosa00 [10]

vEC [74]

powell:2009 [106]

Bertran10 [12]

Table 2.1: Classification of Power Profiling Efforts.

2.2.1 Energy Conservation on Conventional Computer System

In this section, we review the earliest work have been done to design energy-efficient com-

puting systems. Taking performance as the first priority, energy-wise design was less consid-

ered at that time. The research were mainly focusing on CPU, disk, and display on portable

devices.

One of the famous paper that opened continuous work to reduce CPU energy usage, was

written in 1994 [139]. A new concept is introduced as millions-of-instructions-per-joule (MIPJ).

The core idea is dynamic controlling the clock speed. However, the energy consumption for

a particular job does not decrease since the MIPJ required remains the same. The real benefit

comes from reduced voltage while the clock slows down. One consequence affects the per-

formance to apply such technique, is the extended execution time. Given the bottom line is to

save energy, the possibility of scheduling tasks at different CPU cycle time is examined. This

work has greatly inspired the development of Dynamic Voltage Scaling (DVS) and numerous

paper has published targeting toward this field.

Encouraged by the benefits, researchers start building theoretical model [145] based on

the previous work. The objective is finding the most energy-efficient way to schedule the

tasks with the guarantee that all deadlines are met. In this work, based on the assumption
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that power is associated with the CPU speed as a convex function, how the scheduling of jobs

affect the overall energy consumption is analyzed primarily in a off-line mode. This model has

been widely used because its simplicity and soon became a guideline for energy-efficient CPU

scheduling.

On-line heuristic scheduling of aperiodic tasks while retaining the feasibility of periodic

task sets is presented in [56]. Non-preemptive power aware scheduling is proposed in [55].

Another method tries to slow down the CPU whenever there is a single task eligible for exe-

cution was developed in [122]. A more aggressive approach is presented in [6], where both

offline and online algorithms are considered to meet deadlines while reduce the cycle speed

as much as possible. A systematic comparison of different scheduling algorithms on the delay

vs. performance trade-off is demonstrated in [50]. In [104], deadline information are adopted

in the real-time operating system along with the DVS technique. To sum up, most of these

proposed scheduling algorithms attempt to leverage the energy-efficiency and the timing con-

straints of a real time system.

For the alternative approach, rather than direct developing scheduling algorithms for oper-

ating system, is optimizing the program at the very beginning. In [60], a a compiler algorithm

is designed targeting toward effectively optimizing programs for energy usage using dynamic

voltage scaling (DVS). Similar work can be found in [59]. Basically, the objective is to iden-

tify the CPU voltage scaling chances without ruining the performance significantly while in the

compilation time. Though this direction of research shows some different angles on efficient

usage of CPU, the fundamental idea is similar. The essence is to adaptively tuning the voltage

with the reasonable compromised performance.

For the software strategies for the purpose of energy saving, Lorch and Smith (1998) sug-

gest heuristics [88] to

• (i) avoid running processes that are still blocked and waiting on an event;

• (ii) delaying processes that execute without producing output or signaling useful activity;
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• (iii) delaying the frequency of periodic processes that are not likely to produce useful

services.

Compared with the research interest put into CPU usage, other components in the com-

puting system are supported only by few studies. As the benefit provided by different working

modes on processors, the industry realized the importance of integrating this mechanism in dif-

ferent devices. The simulation results show that the overall energy consumption of the system

is not as optimistic as what has been done on CPU solely, especially when interactions to the

memory are needed [92]. As a result, there were voices that DVS can be applied on memory

management as well. This observation is confirmed by the fact that the benefit from DVS is

diluted on the embedded systems with low-power processor and standard memory [105]. [39]

illustrates by simulation that neither memory power management nor the DVS techniques on

processor can save energy dramatically. But by combining two technique together, totally 89%

energy saving, compared with standard base case, can be made. Totally three combination are

examined in the experiments. First, the memory power is constant over the entire period with

the standard memory, so the lowest energy is achieved by minimizing the CPU energy. Another

one is naive power awareness memory that can power down at the end of the period and the

completion of the task. The results show that it is no longer best choice to extend the execution

as long as possible to minimize the CPU energy consumption. On the opposite side, the lowest

CPU frequency produces the highest energy in this case. While the dynamic power-aware is the

advanced technology that can use lower power while the task executing, which is also known

as aggressive policy. The overall energy saving is maximized using this policy, particularly at

the lower frequency during which the memory can power down. All the above experiments are

based on the MPEG decoding program and demonstrate the power management on memory

helps to realize effects of DVS.

A memory power management techniques are proposed in [141] with page migration to

group active pages in close ranks in a memory system as much as possible so that the rest of the
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Figure 2.1: Memory System Architecture. (figure courtesy of [141])

ranks are able to enter lower power state. This mechanism relies on the power saving between

different power states and execution slacks to minimize power usage. However, transition

overhead between different power states needs to be considered as Figure 2.1 shows. RamZzz

is integrated into PTLSim v3.0 simulator [148] for validation.

The basic optimization policies and algorithms mentioned before have focused on predict-

ing the opportunities to switch the whole memory or part of it into low power mode, either

at the run-time, or during the compilation process. The former is the hardware-assisted ap-

proach that can decide the idle time at the cycle level while execution by dynamically analyze

the workload on memory. Whereas, the later is based on statistical analysis or called heuristic

approach which attempts to identify the possible chances to slow the memory frequency.

As the major efforts have been made on the CPU and Memory power management, an-

other group of researchers focuses on the distributed and networked systems. As a result, the

wireless networking protocols and interfaces are becoming increasingly intensive studied, es-

pecially when the mobile devices spread all over. L. Feeney and M. Nilsson experiments the

wireless characteristic in the Ad-Hoc network in 2001 [41]. The results are briefly explained in

Figure 2.2.1. For example, the item (a) means a point to point transmission while (b) means a

broadcast sending operation. The linear coefficients is determined by measurements. Usually,

energy consumption is modeled by the summation of a fixed cost, which is associated with the
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μW ∗ sec/byte μW ∗ sec
point-to-point send (a) 1.9 × size + 454

broadcast send (b) 1.9 × size + 266

point-to-point recv (c) 0.50 × size + 356

broadcast recv (d) 0.50 × size + 56

non-destination n ∈ S, D

promiscuous recv (e) 0.39 × size + 140

discard (f) -0.61 × size + 70

non-destination n ∈ S, n /∈ D

promiscuous recv (g) 0.54 × size + 66

discard (h) -0.58 × size + 24

non-destination n/∈ S, n ∈ D

promiscuous “recv” (i) 0.0 × size + 63

discard (j) 0 × size + 56

idle (ad hoc) (k) 843mW

idle (BSS) 66mW

Table 2.2: Model of power measurement. (table courtesy of [41]

Figure 2.2: Protocol stack of a generic wireless network, and corresponding areas of energy

efficient research. (figure courtesy of [70])

working type, and incremental cost, which relates to the size of data receiving or sending. This

model is simple enough to estimate the energy consumption of wireless communication.

The networking itself is a layered architecture that contains Physical Layer, MAC Layer,

Network Layer, Transport Layer, OS and the application [70]. Each level has different guide-

line for power management, such as routing protocol in the network layer, channel allocation

in the MAC layer, and so on. Figure 2.2 illustrates the networking architecture and the basic

energy-efficient schemes that used within that layer.

The above mentioned three areas are considered to be worth noticing, however, a number

of topics raise from a different angles to achieve the energy-efficient design as well which can
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not be throughout covered. This section attempt to convey the idea that energy saving design

can be obtained from any part of the system.

For example, most efforts in energy-efficient communication design among system com-

ponents have focused on the lower layers of the stack including the physical and link layers.

The basic idea behind these approaches is to encode the binary data sent through the commu-

nication channel to minimize its average switching activity, which is proportional to dynamic

power consumption. Ramprasad et al. (1998) studied data encoding for the minimum switch-

ing activity problem and obtained upper and lower bounds on transition activity reduction for

any encoding algorithm [109]. The main idea proposed by these approaches is encoding the bi-

nary data stream sent through the communication channel when possible to reduce the number

of switching activity, which affects the power consumption.

2.2.2 Studies on System Level of Energy Saving

The research community soon realized the significant impact of overall system level strat-

egy. Luca Benini and Giovanni De Micheli (2000) classifies the system components consuming

major portion energy into three category: computation units; communication units; and stor-

age units [11]. They argue that the energy-efficient design in a part of the system (e.g., the

computing element) can affect others (e.g., memory and/or I/O). Amin Vahdat, et al. (2000),

provide an overview of what they envisioned in the energy-efficient design for post-PC ap-

plications in the new century [134]. Since the processors becoming powerful, the memory

growing huge, along with the increasing bandwidth, battery capacity is improving at a modest

pace. Adding the energy saving into one of the functionality of operating system, undoubt-

edly increases the complexity of the system design. However, the authors suggest to explore

the energy-efficiency in the following aspects: resource management, communications, and

remote computation. Though the techniques the proposed might be similar others in each part

of the system, the overall system energy optimization is the goal rather than for a particular

part.
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To be more specific, for example, memory instructions are among the more power-hungry

operations on the embedded systems and are well studied. Therefore, it can be a proper ex-

ample of resource management. Both a static hardware policy and dynamic hardware policy

are developed based on the appearance of Direct Rambus DRAM (RDRAM) [108], which im-

plements totally four power state as shown in Figure 2.3. The novel of their research is the

”sequential first-touch” which allocates the pages as the order they are accessed. In this way,

most relevant pages are placed together as many as possible so that the rest of the memory can

be in low power state without ruining the performance much. In regard of communications,

there are also numerous opportunities for power optimization including i)adjusting the trans-

mission power based on the distance of receiver and sender,ii)redesign the routing protocol for

the energy-balance or the minimum energy consumption purpose. In addition, the networking

communication, as they argue, can be a cross-layer design based on the application demand.

For example, the time sensitive communication may minimize latency, while others may min-

imize the power. The last point mentioned is how to leveraging remote computation. The

trade-off can be made between sending the data to remote server for computation and locally

execute the program. As a more application-oriented aspect, decisions must be made case by

case.

Another example advocate system level power management can be found in the [150].

The fundamental contribution is defining the unified CurrentcyModel accounting over various

hardware devices and enable reasonable energy allocation among competing applications. A

unit of currentcy represent the right to consume a certain amount of energy during a fixed time

period. The biggest issue in the modeling is how to represent the energy requirement for each

device. First, the authors deduct the currentcy accounting for the CPU, disk, and network card.

For example, the cost of an disk access is computed as

active− state− power− cost(W )

disk−access−bandwidth(KB/s)
∗bu f f ersize(KB)
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Figure 2.3: RDRAM Power States. (figure courtesy of [134])

In addition, the cost of spinning up and down the disk is shared by all tasks, so does the spin

up. Regarding the network interface, sending and receiving energy are calculated as follows:

Esend = (sent bits∗ transmit power)/bit rate

Erecv = (received bits∗ transmit power)/bit rate

The detail modeling can be a tedious and tricky task. The idea is to estimate the energy one

operation consumes on a particular device. The primary goal of ECOsystem is achieving a

target battery life, which determines how much total currentcy can be allocated in each energy

epoch. As a result, the total energy consumption during a time period is under control by

suspending the energy-greedy task. The allocating policy is mainly determined by the priority

of the task or the user defined configuration. Table 2.2.2 demonstrate the energy sharing for

two tasks, ijpeg and Netscape. Under a fixed total 5W energy, by allocating portion of it to

different task, the performance can vary, though the target battery life can be achieved.

As the aforementioned examples shows, the new energy-efficient design trend are mov-
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Energy Share ijpeg Netscape
Power

Alloc(W)

Age Power

Used(W)

CPU

Util(%)

Power

Alloc(W)

Ave Power

Used(W)

Page Load

Latency(sec)

70%:30% 3.5 3.507 22.55% 1.5 1.49 29.205

60%:40% 3.0 3.008 19.43% 2.0 2.006 17.441

50%:50% 2.5 2.500 16.08% 2.5 2.457 9.928

40%:60% 2.0 2.008 12.91% 3.0 2.961 6.322

30%:70% 1.5 1.503 9.67% 3.5 3.443 3.934

20%:80% 1.0 1.005 6.46% 4.0 3.663 3.032

Table 2.3: Proportional Sharing: ijpeg vs. netscape, 5W Total Energy. (table courtesy of [150])

ing from optimizing a particular component in a system to the overall perspective and from

general purpose computer system to embedded systems. Being provided by various energy-

efficient features from the hardware devices, the operating system are expected to flexibly

manipulate these characteristics. The challenges in this area include how to compare the en-

ergy consumption of two different devices(e.g, CPU and memory), how to control the device

behavior from the operating system, and how to leverage the competing requests for the energy

from different applications. Another trend can be easily observed is the application-oriented

energy conservation scheme, or even the user-centric energy configurations generated from

each user’s behavior. For example, a remote computation scheme can be applied to the CPU

intensive applications. Whereas, the data compression or/and the page allocation schemes are

helpful when the application is data-centric.
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CHAPTER 3

WHERE DOES THE POWER GO?

We start the research topics in this dissertation by providing a detailed power dissipation

measurement and analysis of two computer systems. Specifically, in this chapter, we use two

computers of different period, one is an old computer about five years ago (PC05) and another

one is a new computer (PC10), to measure the power dissipation of the main components and

make a comparison between them. We use direct an indirect method to measure the power

when the system is idle or running different kinds of software benchmarks. Through the anal-

ysis of the experiment result, we answer the questions we proposed.

3.1 Introduction
In the last several years, power dissipation of computer systems and the subsequent prob-

lems, such as energy security, environment and climate change, are gradually invoking more

and more concerns. Many works in circuits design, hardware architecture design and software

implementation have been done so as to decrease the energy consumed by computer systems.

For example, several energy saving techniques, such as clock gating technique [79, 99], dy-

namic voltage scaling (DVS) [20, 119] and dynamic frequency scaling (DFS, also known as

clock throttling) [119], are used by the CPU. In addition, software methods, which try to im-

prove the energy efficiency of computer systems, are also researched globally. The Green Grid

group proposed the definition of power usage effectiveness (PUE) [51], aiming to improve the

power efficiency and decrease energy wasted in data centers. In [126], they find the mismatch

between the workload and the power dissipation in data centers. Nowadays performance is not

the only consideration anymore when design the computer system. How to decrease the power

dissipation of computer systems becomes the foremost issue that people both in academic and

industrial areas try to solve.
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The power dissipation of the computer system or a single computer device includes two

parts, the static power and the dynamic power. The static power of a computer device is the

power dissipated on this device when it is in idle state; the dynamic power of a computer

component is the extra power dissipated on this device when it is active. More specifically,

we define the idle state of disk as when it is spinning but no data access operations. The sum

of the static power and the dynamic power is the total power dissipated by this component.

Similarly, the static power of the computer system is the basic power needed to maintain the

running of the system when the system is idle; the dynamic power is the extra power needed

when executing the tasks. More clearly, we define the idle state of the computer system as

when the percentage of CPU utilization is about zero and all the other components are in idle

state.

Static power accounts for a very large ratio of the total power dissipation of the computer

system. When the system is idle, most of the energy used in this state is not considered as used

for computing. Thus, one important task of power management is try to decrease the static

power of the components and the computer system. For example, by using clock gating most

sub-units of CPU can work in the low power mode when it is not used. In this way, the static

power of the CPU is decreased. In addition, new memory refresh strategy [126] makes the

memory could be refreshed with lower power compared with memory access operation. All of

these methods try to decrease the waste of energy generated by static power. To decrease the

dynamic power, people try to design low power circuits and use new energy saving materials,

such as phase-change memory (PCM) [82]. PCM uses a special kind of non-volatile storage

material which do not need to refresh to maintain the data in the memory. Software method

aims to improve the energy usage efficiency by improving the executing efficiency and making

different power saving strategies for the system.

Although, the aforementioned work have been done in power management area, the com-

puter systems are still consuming an ever increasing amount of energy and the power dissipa-
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tion of computer system do not decrease too much. Where does the power go in a computer

system is a question that grabs more and more people’s interests but have not yet been answered

clearly. It is important to realize the power profile of the computer system. Thus, people get to

know which area deserves more research work. Moreover, what is the trend of power manage-

ment of the computer system? Finally, whether there are some implications, which can serve

as guidance for future research? The goal of this chapter is try to answer these questions.

First, we give a clearly view of the power profile in the computer systems. Second, through

the experiment we find some observations, which tell us the trend of power management in the

last several years. Finally, we find some implications that are helpful for future research. For

example, CPU utilization can not accurately reflect power dissipation of the CPU. We define

CPU utilization as the time spent in executing the task set, as opposite to the time spent to

execute idle task, such as I/O wait.

The remainder of this chapter is organized as follows: Section 3.2 describes the background

of our work and related works of this chapter. Then, we will describe the method we used to

measure the power of these main components in Section 3.3. In Section 3.4, we relates the

configuration of our experiment platform, how do we make the experiment and the evaluation

of the experiment result. Section 3.5 will talk about the implications we get from the analysis

of the experiment result. Then, we will make the conclusion in Section 3.6. Finally, Section 3.6

talks about the future work of power management.

3.2 Background & Related Work
While several previous work [8, 110, 18] have addressed the problem of energy unpropor-

tionately in the computer systems, but none of these works tell the fine-grain power dissipation

of the computer systems. And that no people have made a comparison between old computer

systems and the new computer systems. In [8], they find that the power efficiency in a data cen-

ter is low, and that the energy used for computing usually accompanied with a large amount of

energy that are not really used for computing, for example cooling down the computer systems.
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[110] gives an global view of the sources of waste of energy in the computer systems, also it

gives a bunch of recipes for energy efficiency in computer systems. Finally, [18] tells us the

strong requirement of power management in computer system with a bunch of statistical data.

It describes the power management strategies used by software method. More importantly, it

argues the requirement of the energy model.

Understand the power dissipation is the basic for the further research of power management.

Only when we realize the power of the component in different state, we can make efficient

strategies to save energy. In addition, we will be able to find the right direction of research that

decrease the power dissipation of computer systems and improve the energy efficiency. Several

works have been done in modeling and understanding the power dissipation of the computer

system. [76] develops an automated tool and use it to get the energy usage of various resource

components. Masehri et. al. run a group of different benchmarks and uses subtract method

to find out the power dissipation of the main computer components in [90]. In addition, [35]

builds the energy model for the main components, which includes CPU, memory, disk and

network interface card (NIC); using these model they compute the power dissipation of the

components dynamically. Different with these works, in this chapter we use a method that

directly measure the current on the wires of the ATX power connector. Our method can get

more accurate power dissipation result for these components. Besides, our work can be a

validation basis for most of the energy modeling work.

Before the year of 2000, people already realized that performance is not the only require-

ment when design the computer systems. Moore’s law tells us that the trend of hardware

improvement. Also, this trend implies the quickly increasing of power dissipation of computer

systems. Then people inclined to design multi-core processor other than continually increase

the frequency of the processor. Especially these years, a lot of work have been done to save

the energy consumed by computer systems. The trend of power management is helpful for

the future research work. In this chapter, we derive out some trends of power management by



www.manaraa.com

32

doing a bunch of experiments.

Nowadays, nearly each computer component could work in several states, this makes the

operating system could make out different power saving strategies based on the workload of

the system and the user’s usage habit. In [20], they add a dc-dc switching regulator to transfer

the voltage into several smaller voltage to supply electricity for CPU’s sub-units, in this way

CPU could work in different power mode. New DRAM refresh control techniques [126] are

also proposed to reduce the static power of memory. Also, some people argues that traditional

DRAM should be replaced by new memory, such as PCM [82], in the future. The memory

may work on different modes based on the accessing frequency of the memory. This makes

the operating system or other programs can make different strategies to save energy.

3.3 Power Measurement
To understand the fine-grain power dissipation in a computer system and the trend of power

management, we need to measure the power of the main components of the computer system

in detail. This section describes how do we measure the power of CPU, memory, disk and NIC.

Because of the power supply circuits on the motherboard of the computer is very complicated,

we use specific method to measure the power of each component. In addition, we run some

benchmark programs to generate different kinds of system usage and measure the dynamic

power of the components. Although the description of our power measurement method is

based on our experimental platform that we will address in the next section, it could be easily

used on other platforms.

3.3.1 Power Measurement Problems

Some components, such as disk and CD-ROM, use a separate ATX power connector to

supply electricity. We can measure the current on the cables of these ATX power connectors

directly, then we can compute the power of these components with the measured result. But,

for other components which usually connected with the motherboard, such as memory, CPU

and NIC, we can not get the power of them by measuring the current directly. These compo-
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nents use motherboard to supply electricity and it is difficult to understand the circuit of power

supply module of the motherboard. The motherboard usually use a 20 pin or 24 pin ATX

power connector to supply electricity; the voltage of cables with different color on ATX power

connector is different. Figure 3.1 shows the 20 pin ATX connector of PC05, while Figure 3.2

shows the 4 pin ATX connector of PC05. All these two ATX connector are connected with

the motherboard of PC05. These two ATX connector supply electricity for the motherboard,

then the motherboard supply electricity for other components that are plugged on the mother-

board. Figure 3.3 is the 24 pin ATX connector of PC10. In addition, PC10 also has a 4 pin ATX

power connector as that of PC05. In this way, components that work on different voltage get

the voltage they needed from the motherboard.

Sometimes, second or third times of voltage conversion are needed for some components

that ATX power connector do not directly supply the same voltage as their working voltage.

In addition, some components may work on the same voltage. This means that the same color

cables of the ATX connector may not only supply electricity for only one component. So,

we can not directly get the power of these components by measuring the current of cables

which supply the same voltage as the component. Finally, the power supply specification may

different for different computer platforms. For example, the new computer system usually set

a 4 pin ATX power connector to supply electricity for CPU separately, but some old computer

system does not. So, it is very hard to measure the power for these components accurately,

and the power measurement method should be related to the experiment platform. Basically,

we use two methods, direct measurement and indirect measurement, to get the power of these

main components.

3.3.2 Direct Power Measurement

We can get the power of some components by measuring the current of the ATX power

connector of them directly. The old machines usually use the 4 pin peripheral power cable to

supply electricity for this type of components. The voltage of the yellow and red wires on this
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Figure 3.1: 20 pin ATX power connector of PC05.

ATX power connector are +5V and +12V; the black wires are connected to the ground. The

component may use one of these two voltages at different states. For example, when the disk

is spinning up and down, it uses +12V voltage. The new machines usually use SATA power

cable, which adds +3.3V voltage to the old 4 pin peripheral power cable (some SATA power

cable may not have +3.3V wire). To measure the power of these components, we cut the wires

except for the ground wires and connect multimeter to measure the current on the wires. The

power dissipated on the multimeter is very small, so we can neglect it. Suppose, the current of

a wire with voltage Vi is Ci . So, The power of a component of this type is :

Pd =
n

∑
i=1

Ci ×Vi i = 1,2 or i = 1,2,3 (3.1)

3.3.3 Indirect Power Measurement
Benchmark Yellow-1 Yellow-2 Brown-1 Brown-2 Brown-3 Blue White Red-1 Red-2 Gray Green Yellow-0 Red-3 Red-4

MEM Y Y Y Y Y N N N N N N N N N

INT Y Y N N N N N N N N N N N N

Table 3.1: Power supply relationship of components and cables of PC05.

In order to measure the power of the components that supply electricity by the motherboard,
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Figure 3.2: 4 pin ATX power connector of PC05.

first we need to distinguish which cables of the ATX power connector that are related with this

component. In addition, we need to find out whether these cables are supply electricity for

this component only. To find this we need to measure the current on each cables except for

the ground cables, then run different micro-benchmarks and see which cable’s current changed

after start the micro-benchmark. We use two simple micro-benchmarks to find out which

cables are related with memory and CPU’s power supply. IntegerTest (INT) benchmark, shown

in Listing 1, is a simple program, which executes integer computation continually. It is a

light weight benchmark that can fit in L1 cache, so that it will not incur memory reference

after it is loaded. MemoryTest (MEM) benchmark, shown in Listing 2, is a program that

access memory continually. When running this benchmark both the CPU and memory will be

active. By setting different ARRAY SIZE, MEM benchmark can also be used as L1CacheTest

(L1) and L2CacheTest (L2) benchmark. Table 3.1 shows the relationship between cables and

components on PC05. This computer uses both 4 pin ATX power connector and 20 pin ATX

power connector to supply electricity for the motherboard. Yellow-1 and Yellow-2 are cables
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Figure 3.3: 24 pin ATX power connector of PC10.

of the 4 pin ATX power connector, the others are cables of the 20 pin ATX power connector.

After we know the relationship we can use different method to find out whether some cables

supply electricity for a component only. The following paragraph will talk about how we get

the power of CPU, memory and NIC in detail.

1 int main(int argc, char *argv[])

2 {

3 unsigned int a , b;

4 a = 1; b = 2;

5 while(1){

6 a = a+b;

7 }

8 return EXIT\_SUCCESS;

9 }

Listing 3.1: The code of integer benchmark.
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1 #define CACHELINE_SIZE 64

2 #define L2CACHE_SIZE 2048

3 #define ARRAY_SIZE (L2CACHE_SIZE * 1024

4 / CACHELINE_SIZE * 2)

5 typedef struct{

6 int data[CACHELINE_SIZE/4];

7 }LINE;

8 LINE array[ARRAY_SIZE];

9

10 int main(int argc, char *argv[])

11 {

12 unsigned int size = ARRAY_SIZE;

13 unsigned int i = 0;

14 while(1){

15 array[i%size].data[0] = i;

16 i++;

17 }

18 return EXIT_SUCCESS;

19 }

Listing 3.2: The code of cache benchmark.

CPU’s power

From Table 3.1, we know that only Yellow-1 and Yellow-2 supply electricity for CPU. In

fact, most new motherboard use a specific 4 pin or 8 pin +12v voltage cable supply electricity

for CPU, so that the CPU can get a very stable voltage. The two computer we used both use

a 4 pin +12v voltage cable. We cut the cables except for the ground cables of the 4 pin ATX

power connector and connect multi-meters to measure the current of these cables. The power



www.manaraa.com

38

of CPU can be computed use Equation 3.2:

PCPU =
n

∑
i=1

Ci ×12.00 i = 1,2 or i = 1,2,3,4 (3.2)

Our experiment result is very close to the specification of the CPU both at idle and busy

state. Although part of power is dissipate by CPU power supply circuit, which is part of the

motherboard, it makes sense to count it as power dissipated by CPU.

Memory Power

Also, we need to measure memory’s power use indirect method. From Table 3.1 we can

see that when we run the MEM benchmark, the current of the yellow wires of the 4 pin +12v

voltage cable and the brown cables of the 20 pin motherboard power cable changed. The yellow

wires of the 4 pin +12v voltage cable change because of the CPU, so the 3 brown cables of

the 20 pin motherboard power cable are related with the memory. From Table 3.2 we can see

that the power supplied by this three line is higher than the memory’s specification power. This

means other parts of component also use these three cables to supply electricity.

Brown-1 Brown-2 Brown-3 Power

1.418A 0.864A 0.92A 10.56W

Table 3.2: Brown cables measure result of PC05 when the system is idle.

For the purpose of getting the memory’s static power, we need to set different memory

number and measure the current. This platform uses two same size memories, we call them M1

and M2. First, we use two memories and measure the current to get a power P1 use Equation 3.3.

Then, we remove M2 and measure again, we got P2. Finally, we remove M1 and change it to

M2 and measure it once more, we got P3. With this three value we can get the total memory’s

power with Equation 3.4:

PSUM =
n

∑
i=1

Ci ×3.3 i = 1,2,3 (3.3)
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PMemory = 2×P1 −P2 −P3 (3.4)

Strategy Brown-1 Brown-2 Brown-3 Power

Both 1.418A 0.864A 0.92A 10.56W

M1 1.117A 0.827A 0.73A 8.824W

M2 1.166A 0.724A 0.77A 8.778W

Table 3.3: Brown cables measure result of PC05 when use different memory.

From the result, shown in Table 3.3, we get the power of the memory is 3.518W, this is

close to the memory’s specification power.

NIC’s Power

Network interface card usually connected with the motherboard through the peripheral

component interconnect (PCI) or peripheral component interconnect express (PCI-E) port, it is

powered by the motherboard as the memory. We can measure the memory’s power use indirect

method, but it is hard for us to measure NIC’s power. The reason is when the NIC is active

memory and CPU are also active. So, we can not use the method we related before to distin-

guish which lines of the ATX power connector supply electricity for NIC. We can get the total

power of the system when plug in the NIC and remove the NIC. The result shows that the total

power of the system does not change on these two circumstances. This means that the power

of NIC is very low, that we can nearly ignore it.

3.4 Experiments & Evaluation
Using the method described in the last section, we do several experiments on our two

platforms. In this section, we will describe our experimental platform first. Then we will

evaluate our experiment result from three angles, which include fine-grain power dissipation,

energy model and the trend of power management.
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3.4.1 Experiment Platform

Our experiment platform includes two desktop PCs, a new HP PC(PC10) and an old Com-

paq PC(PC05), which was bought about five years ago. Since these two PCs are produced by

the same company, it is reasonable to use them to make an comparison. PC05 uses an Intel Pen-

tium 4 2.0GHz uni-core processor. This CPU do not support DFS, it can only work on 2.0GHz.

In addition, it has two 512MB DDR memories and an 80GB Seagate disk. PC10 uses an Intel

Pentium E5300 2.60GHz dual-core processor, which support DFS and could work on more

than eight frequencies. Also, the core could work on different voltages range from +1.110V

to +1.328V. In addition, it has two DDR3 memories, one is 1Gb and another one is 2Gb, and

has a 640Gb WD disk. Finally, all of these two platforms have no other components except the

motherboard, the power supply, the CPU, the memory, the disk and the fans. We only concern

on these regularly used components in this chapter. Table 3.4 shows the configuration of this

two platform in detail.

Component PC05 PC10

CPU

HP Compaq

Intel Pentium 4 2.0GHzv

1 core

Core Voltage 1.471V

512KB L2 Cache

8KB L1 Cache

HP

Intel Pentium E5300

2 cores

Core Voltage 1.100V

2048KB L2 Cache

32KB × 2 L1 Cache

Memory

DDR 256MB × 2

Frequency 132.9MHz

Cycle Time 6 clocks

DDR3 1GB + 2GB

Frequency 399.0MHz

Cycle Time 15 clocks

Disk 80GB Seagate Disk 640GB WD Disk

Table 3.4: Experiment platform configuration.

Except using multimeter to measure the power of a specific component, we also use a

”Watts Up” to measure the power of the system. In this chapter, we only concern on several

main components of the main frame, so the ”Watts Up” is connected with the main frame’s

power cable. The monitor uses a separate power cable to supply electricity.

Finally, we use five micro-benchmarks, the INT benchmark, MEM benchmark, L2 bench-
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mark, L1 benchmark and Prime95 (PRIME) benchmark, to generate the dynamic power. List-

ing 1 is the code of INT benchmark. Use the code of Listing 2, when we set different AR-

RAY SIZE and CACHELINE SIZE, it becomes MEM benchmark, L2 benchmark and L1

benchmark. The difference of these three benchmarks is that the data will be read from 3 differ-

ent storage levels in the cycle. PRIME benchmark is said to be the most severe benchmarks of

CPU. It could make the CPU nearly dissipate the highest power. All these five benchmarks can

make the percentage of CPU utilization come to 100% and generate stable power dissipation.

So, we can use these benchmarks to find out how much dynamic power the components of the

computer system dissipate.

3.4.2 Fine-grain Power Dissipation of PC

The first aim of this chapter is to tell the fine-grain power dissipation in a computer system.

From Figure 3.4 we can see that the static power of the new CPU has decreased about 45

percent compared with the old one. Also, it shows that even though the size of memory has

increased 2 times compared with the old one, the static power of memory decreased about 64

percent. Finally, we can see that the static power of disk of these two platforms are about the

same.

Figure 3.4: Power dissipation comparison of the main component.

From Figure 3.5, we can see that on PC05 the CPU’s power dissipation accounts for 15 per-
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Figure 3.5: Pie chart of the power dissipation of PC05.

Figure 3.6: Pie chart of the power dissipation of PC10.

cent, which is only slightly higher than memory and disk. All the other parts of PC05 account

for about 58 percent, which is mainly dissipated by the power supply and the motherboard.

This two components, as we can see, dissipate more than half of the total power of the com-

puter system on PC05. Although we can not measure their power directly, if we assume the

transfer efficiency of the power supply is 85 percent, then the power supply dissipates about

6.8W and the motherboard dissipates about 19.3W.

Figure 3.6 shows that the power dissipation of disk of PC10 accounts for about 17 percent,

which is much higher than the power of CPU and memory. As we know from Figure 3.4,

the power of disk does not change a lot between our two experiment platforms. The static

power of CPU is not the dominant anymore in these three components when the system is idle.

In addition, we can see that the other parts accounts for 67 percent, which is higher than the

PC05. Also, we assume the transfer efficiency of the power supply is 85 percent (the transfer

efficiency of power supply does not improve in the last several years [125]), then the power of

power supply is 6.15W and and power of motherboard is about 22.1W. This result can generally

tells us that the power dissipation of motherboard and power supply also do not decreased in

the last several years.
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Since we can not set the system working on a specific percentage of CPU, memory or

disk utilization in a time interval except fully utilized or fully idle. We compare the dynamic

power of these devices when they are fully used. We run a bunch of benchmarks to make these

devices busy, then we measure the power of these devices. From Figure 3.7 we can see that

the dynamic power of CPU is different when running different benchmarks. Moreover, this

figure shows that the dynamic power of PC05 is higher than PC10 when run each benchmark.

Especially, when running the MEM and INT benchmarks the dynamic power of the new CPU

decrease more than 35 percent compared with the old one. This means that the INT computing,

bus control and BUP sub-unit’s dynamic power dissipation have decreased significantly.

Figure 3.7: Dynamic power of CPU.

We use three different benchmarks, MEM, L2, L1 benchmarks, to generate the dynamic

CPU usage. The difference of these three benchmarks is that it read data from three different

storage levels. L1 benchmark only reads data from L1 cache, and the other two benchmarks

read data from both L1 and L2 cache. The access frequency of these three benchmarks is

different because of the read latency of these three level of storage is different. Figure 3.8

shows the percent of cache’s power relative to the CPU’s power. We can see that it accounts

for more than 70 percent for both platforms when run each benchmark. In addition, on PC10
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Figure 3.8: The impact of the power of cache on the power of CPU.

when run L2 benchmark it is more than 80 percent. Also, from Figure 3.9 we can see that

cache’s power accounts for nearly more than 20 percent for both platforms when run these

three benchmarks. When run L2 benchmark on PC05, it nearly hit 35 percent. This means that

cache accounts for a large amount of the power dissipation.

3.4.3 Energy Model

Energy model is the key for power profiling with software. Only with the accurate energy

model we can give out the power dissipation of each component on system level or even process

level. Another important contribution of our work is that, from the experiment result we find

the factors that are related with the components. With these observation we come out the

energy model for CPU and network.

Energy Model of CPU

We know that the power dissipation of CPU includes two parts the static power (Ps) and the

dynamic power (Pd). The static power of CPU does not change with the workload or frequency

of CPU. Figure 3.10 shows that when the system is idle, the static power of the CPU does not

change as we change the frequency of the CPU. Also, the total power of the system does not
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Figure 3.9: The impact of the power of cache on the power of the whole computer system.

change. When we running different benchmarks under different CPU frequencies, the CPU’s

power increases gradually with the increasing of CPU frequency. Figure 3.11 shows this result.

In addition, Figure 3.11 shows that the total power of the system also increased gradually as

the CPU’s power. The reason is that these two benchmarks we used to do this experiment only

generate CPU power dissipation, so the increase of CPU’s power is the increase of the power

of the system on each step. In addition, Figure 3.12 shows the percentage of CPU’s power

relative to the system when run INT and L2 benchmarks with different frequencies. We can

see that the dynamic power of CPU has linear relationship with the frequency of CPU. From

our result, we come to an energy model for CPU as shown of Equation 3.5.

PCPU = Ps + k×F × (δ1P1 + ...+δnPn) (3.5)

In this equation, F denotes the current CPU frequency. P1, ..., Pn denotes the power of each

sub-units of CPU and δ1, ..., δn denotes the current percentage of utilization of each sub-units.
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Figure 3.10: The static power of the system and the CPU with different CPU frequencies on

PC10.

Figure 3.11: The power of the system and the CPU with different CPU frequencies and running

INT and L2 benchmarks on PC10.

Energy Model of Network

In addition, it is also useful to know the energy model for an application that we usually

used, for example network downloading. When we downloading files with our experimental

platforms, we find that the total system’s power has linear relationship with the downloading

bandwidth. In addition, when we downloading a file, we find that CPU, Memory and Disk are

all active. Although, the NIC is also active, but our experiment shows that NIC nearly has no
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Figure 3.12: The percentage of CPU’s power when running MEM and L2 benchmarks.

power dissipation. So, we can come out the energy model for network downloading:

PNET = k×B× (δ1PCPU +δ2PMEM +δ3PDISK) (3.6)

In Equation 3.6, B denotes the downloading bandwidth.

3.4.4 The Trend of Power Management

From our experiment result we can generally find that, in the last several years, power

management of computer systems grabs more and more concern by academic and production

areas. System performance is not the only consideration any more when design a new com-

puter system. But, most components of the computer system, such as disk, power supply and

motherboard do not dissipates less power than before.

The Power Management of CPU

From our experiment we observe that the static power of CPU has decreased dramatically in

the last several years. This means that CPU has used more and more power saving techniques,

like clock gating and DVFS. The clock gating technique is used on more sub-units in new

CPU thus the static power of new CPU have decrease greatly. In addition, DVS and DFS

technique is efficient method to decrease the waste of energy when the system is in idle state.
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The performance is not the only consideration, people began more and more concern on power

management.

In addition, we find that the dynamic power of CPU does not decrease. This shows that the

power of the sub-units of CPU do not decreased because the CPU use more and more transistor

and the density of CPU increased quickly. Therefore, a lot of work need to do to decrease the

CPU’s dynamic power through the IC design level. Our experiment shows that the dynamic

power of CPU may accounts for more than 70 percent of the system, so it is valuable to work

on this area to save energy.

The Power Management of Memory

The static power of memory are closely related with the size of the memory, because most

power is dissipated on the refreshing of memory. From our experimental platform we can see

that the size of the memory has increased 3 times, but the static power decreased about 64

percent. This means in the last few years the power management of memory has acquired great

success. The density of memory is much higher than before, however it dissipates much less

power. Also, new refresh techniques are proposed to make the memory refresh operation exe-

cuted in an energy saving mode. Although the static power of memory is only about 0.7w per

Gb for a general computer system, the memory’s power dissipation occupies the leading posi-

tion than other devices for some large computer system, such as the server in the data center.

A new trend of memory energy saving is replace traditional DRAM with non-volatile storage

materials, such as PCM [82]. From our observation, we know that the power dissipation of

memory is much less than other components on PC10, so memory is not a big deal in the future

several years.



www.manaraa.com

49

The Power Management of Disk

Our experiment shows that the static power of the disk does not change in the last few

years, although new techniques have been used on disk, which add more work state to the disk.

This enables the operating system make out power saving strategies. Our experiment shows

that the power dissipation of the disk even increased in the last few years. In addition, we find

the percentage of disk’s power dissipation increased in the last few years.

The Power Efficiency of Power Supply

Although the 80 plus program [125], in which most computer producer agree that the future

produced power supply should be come to an transfer efficiency of more than 80 percent, was

agree by most producer of computer system. In [18], researchers argue that that the transfer

efficiency of power supply does not improved in the last few years. Since, all the energy

consumed by power supply is not used for computing and it accounts for 15 percent of the

system’s total power, so it is a good topic to work on this area.

The Power of Motherboard

Finally, we observed that the power dissipation of the motherboard did not decrease in the

last several years. In addition, the power of motherboard accounts for about 20 percent of the

system. So, a lot of work still need be done on the circuit design of the motherboard. The

development of low power motherboard is significant for the decreasing of the system’s power.

3.5 Implications
After these observations, we are now in a position to derive several important implica-

tions for future energy efficient system design, especially we give a few common but wrong

assumptions made by previous work in the field.
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3.5.1 CPU Utilization

Software power profiling is an critical step of power efficient system design. A bunch of

work [76, 90, 35] build their energy model based on CPU utilization. However, our experiment

shows that CPU utilization is not strictly related with CPU’s power. In Figure 3.7, all of these

five benchmarks can make the percentage of CPU utilization come to 100%, but we can see that

the power of the CPU is different for both platforms. The PRIME benchmark, which is the most

severe CPU benchmark, makes the CPU come to a highest CPU power dissipation, while the

MEM benchmark generates the least power dissipation. The difference of power dissipation of

CPU is mainly because of the using of clock gating technique. These benchmarks use different

sub-units of CPU, which have different power dissipation. Canturk Isci et. al. proposed a

more accurate CPU power model in [67], this power model considers nearly all the sub-units

of the CPU. But, this work is based on the CPU of the same period as PC05. In addition, using

this model we need a fully understanding of how the CPU works. So, it is hard to be used

on the new CPU directly. We find out that conventional definition of cpu utilization is not a

good indicator of power dissipation, thus, previous cpu utilization-based power management

schemes need to be revisited. Finding a good indicator of power dissipation is an urgent and

open problem.

3.5.2 Controllable Cache Size

In order to improve the system performance, the cache size increased quickly. But, we

observe that the power of cache sub-unit account for more than 70% of the CPU’s total power

dissipation. In Figure 3.7, we can see that L2 benchmark makes CPU dissipates more power

than MEM benchmark. Because of the frequency difference of memory and CPU, the CPU

have to add several idle time periods to wait for the memory. This means the workload of L2

benchmark is much higher than MEM benchmark, so it dissipates higher power than MEM

benchmark. In addition, we find that L1 benchmark dissipates less power than L2 benchmark.

That’s because the size of L2 cache is about 4 times of L1 cache. The power dissipation of
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cache sub-unit is directly related with the cache size. Our result is the same with the result

in [67]. Since performance of processor is not the only consideration and cache consumes a

lot of energy, there must be a tradeoff between performance and power dissipation. The cache

size should consider the realistic usage. Sometimes the lower performance is enough for the

tasks, for example when watching a low resolution video. For scientific software, performance

is the most important thing. So a controllable cache size could certify both the performance

and power saving requirements. The operating system should be able to decide the used cache

size based on the realistic requirements in the future.

3.5.3 Higher Transfer Efficiency are Needed

Because many components of the computer system work on different voltages, the power

supply must transfer the AC to different voltage of DC. In addition, the voltage needs to be

transferred another one or several times to meet the specific needs of a device. These voltage

transfer circuit may on the motherboard or in a device. For example, the CPU use a 4 pin ATX

power connector to supply +12v voltage, the work voltage of the new CPU’s core is only about

+1.1v. Thus the +12v voltage needs to be converted to the real work voltage of the core by the

voltage regulator module (VRM). Ideally, the transfer efficiency is 100 percent, but in realistic

the transfer efficiency is less than this value. For example, the transfer efficiency of power

supply is about 85 percent for these new power supplies. Much energy has been wasted during

this process. We use fans to make an experiment because we can measure the power of fans

directly. First, we use multimeter to measure the current on the electricity cable on the CPU

fan and computer case fan. Then, we read the total system power before and after we remove

these two fans. Figure 3.13 shows that, the transfer efficiency of fans is only about 25 percent.

75 percent of energy that used to supply electricity for fans is wasted. This part of energy can

be saved if the voltage of fans convert less times and the transfer efficiency of power supply is

improved. The future design requires that more components work on the same voltage, thus

the transfer times of voltage could be decreased. Also, it is valuable to work on the voltage
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transfer area.

Figure 3.13: Transfer efficiency of CPU, memory, disk and fans.

3.5.4 Multi-core Task Allocation

With the increasing of the cores in CPU, how energy-efficiently schedule the tasks on cores

becomes a critical problem. Some work [80, 9] have already proposed method about how to

efficiently schedule jobs on multi-cores so as to save energy. One method is make part of the

cores work in lower workload or idle state while others in higher workload; another method is

make all the cores as busy as possible, after the task is finished then make all of them in idle

state. We made an experiment to verify which method is more energy-efficient.

PC10 uses a two core processor. First, we running each benchmark to make both cores busy

and record the CPU’s power dissipation. Then we run each benchmark and designate it running

on the first core then record the CPU’s power dissipation. Finally, we run each benchmark and

designate it running on the second core then record the record. The last two test will make

only one core of the CPU in fully busy state and another CPU in idle state. Figure 3.13 shows

that when set one core idle and one core busy the CPU’s power dissipation is only slightly less

than when the two cores of CPU is all busy. When we run the MEM benchmark to make all

the cores busy, it even generate a less CPU power dissipation than the other two circumstances.

The result shows that the first method does not really save energy. The second method is a
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Figure 3.14: The power of CPU when run benchmarks on different cores.

good choice since it could make the CPU work longer in low power dissipation state.

3.6 Summary
In this chapter, we use two experiment platforms of different period (PC05 and PC10) to

measure the power dissipation of several main components of these two computer systems.

From our experiment result, we give a clearly view of power dissipation in a computer system.

In addition, we derive out some trends of power management and some implications that are

helpful for energy efficient system design.

First, we describe our experimental method in detail based on our experiment platform.

Our method can be easily used to measure the power dissipation of other platforms. More

importantly, we introduce a method to give out the power supply relationship between cables

of the ATX power connector and the components of the computer system. It is useful for the

future even if the specification of the ATX power supply connector changes in the future. In

addition, we introduce the direct and indirect power dissipation measurement method, which

could be used to measure nearly all the main components of the computer system.

Using our power measurement method, we measure the power dissipation of the main com-

ponents of the computer system. The result shows that the static power of CPU and memory
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have decreased a lot in the last several years. While, the power dissipation of disk, power

supply and the motherboard do not change too much. In addition, we find that the total power

dissipation of the new platform is less than the old platform. Based on the observations and the

analysis of the result, we derive out some trends of power management of computer systems in

the last several years.

Finally, based on our observations we derive out several critical implications that are helpful

for energy efficient system design, shown in Table 3.5. Our result shows that CPU utilization

can not reflect CPU’s power accurately. Because when run different benchmarks, all of which

make the CPU fully used, the power dissipation of the CPU is greatly different. In addition,

our experiment result shows L1 and L2 cache account for a large amount of the CPU’s power

dissipation. Thus, if the cache size is controllable by the operating system, we can make out

efficient energy saving strategies by decrease the size of the cache. Also, some component’s

transfer efficiency is much lower than we thought before, the voltage transfer times should be

decrease in the future. Finally, we find it is an mistaken idea that scheduling the tasks on the

multi-core system to make part of cores idle and another part busy can save energy.

By conducting measurement and research in this chapter, we achieved our first objective.

Particulary, we identified that CPU dynamic power still dominates as much as 70% of the

whole system power dissipation although the CPU static power has been reduced significantly

over the past five years. Dynamic power dissipation quantifies the resource usage in a computer

system at a certain level, which is closely related to software workload activities. In order to

better understand the behavior of workload in association with the power dissipation, especially

CPU dynamic power, hardware instrumentation is an necessary approach. However, due to the

complication and cost of the equipment, this hardware approach is not always available. In

addition, there are circumstances that all we need to analysis is not the particular power values

but the general shape of the power dissipation. Run-time estimation techniques fits these needs

well. In the next chapter, we will analyze the CPU dynamic power dissipation and attempt
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to identify a power model that estimate power dissipation of a CPU within an accepted error

range.
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Target Observations Implications

CPU

When the percentage of CPU uti-

lization is 100%, the power is differ-

ent when run different benchmarks.

CPU utilization is not a good indica-

tor of the power dissipation of CPU.

CPU frequency has linear relation-

ship with the dynamic power.

Frequency control is efficient

method to control the power and

temperature of CPU.

Cache dissipates a large amount of

power when it is used. The power

dissipation of cache is related with

cache size.

Cache size should be controllable

in the future, so that the operating

system can tradeoff between perfor-

mance and energy saving require-

ments.
In a multicore system, idling part

of cores while keeping the rest of

cores busy does not decrease the to-

tal power of CPU too much.

The task allocating strategy that

make part of cores idle while the

other parts busy is not the efficient

strategy that save energy.

Memory
The power of memory of PC10 is

much less than that of PC05 although

the memory size of PC10 is 3 times

of PC05’s.

In the near future, memory power

should not be a big problem on desk-

top machines.

Disk The power of disk of PC10 is about

the same as PC05’s.

The disk power dissipation is stable

and as the inception of solid state

drives, the disk power should not be

a major problem too.

Power Supply

The more times the voltage of a

component are transferred the less

the transfer efficiency of this com-

ponent is.

The voltage transfer times of the

components should be decreased.

All the components of the computer

system should work on the same

voltage.
Power supply and motherboard dis-

sipates more than half of the total

power of the system.

The transfer efficiency of power sup-

ply need to be improved and it is

valuable to research on this area.

Table 3.5: A Summary of Observations and implications.
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CHAPTER 4

SPAN

In the previous chapter, we observed the trend of power dissipation design in computer

system. Undoubtedly, the dynamic power dissipation of the major component in the system

occupies a large portion of the whole system. This part of power dissipation is triggered by

system resources usage, such as various registers, caches, pipelines in a CPU. In this chapter,

we take a insight analysis of what is the major indicator of CPU dynamic power dissipation.

If such indicator exists, we are able to approximate the power dissipation of a CPU without

hardware instrumentation. In this chapter we mainly introduce how we model the run time

power dissipation of a CPU. Using the model, we propose SPAN, a set of APIs for function

level power profiling.

4.1 Introduction
Understanding the power dissipation behavior of an application/workload is the key to de-

signing energy-efficient computer systems. Power modeling based on performance monitoring

counters (PMCs) is an effective approach to analyze and quantify power dissipation behaviors

on a real computer system. One of the potential benefits is that software developers are able to

optimize the power behavior of an application by adjusting its source code implementations.

However, it is challenging to directly relate power dissipation to the execution of specific seg-

ments of source code. In addition, the existing power models need to be further investigated by

reconsidering multicore architecture processors with on-chip shared resources. Therefore, we

need to adjust PMC-based power models from the developers perspective, and reevaluate them

on multicore computer systems.

In this chapter, we propose a two-level power model that estimates per-core power dissi-

pation on chip multiprocessor (CMP) on-the-fly by using only one PMC and frequency infor-
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mation from CPUs. The model attempts to satisfy the basic requirements from developer point

of view: simplicity and applicability. Based on this model, we design and implement SPAN,

a software power analyzer, to identify power behavior associated with source code. Given an

application, SPAN is able to determine its power dissipation rate at the function-block level.

We evaluate both the power model and SPAN on two general purpose multicore computer

systems. The experimental results based on SPEC2008C jvm benchmark suite show the av-

erage error rate of 5.40% across one core to six core validation. We also verify SPAN using

the FT benchmark from NAS parallel benchmark suite and a synthetic workload. The overall

estimated error of SPAN is under 3.00%.

4.2 Two-Level Power Modeling
Actually, the power dissipation of a given platform can be divided into two parts:

• Baseline Power: the static power dissipation to maintain a system running. To be spe-

cific, static power of a motherboard, CPU, memory, CPU fans, and other components

contributes to this part of the power dissipation.

• Dynamic Power: the power dissipation due to a task execution. By executing work-

loads on different platforms and different frequencies, dynamic power varies consider-

ably. Other contributing factors could be temperatures, characteristics of workloads, and

component utilizations.

The first primary goal of this chapter is to find a practical power estimation model describ-

ing dynamic power on multicore power-aware processors by using as few PMCs as possible.

The essence of utilizing PMCs to estimate power dissipation is about information trade-off.

The more PMCs information is retrieved, the more detailed and accurate the power model

could be. However, collecting PMCs sometimes can be troublesome. First, commonly used

processors cannot support retrieving more than a certain number of counters simultaneously.

Previous models proposed [72, 28] necessitate multiplexing the counters so that several of them
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can be accessed for one benchmark. Besides, types and names of the monitored events vary

from platforms to platforms [49]. Usually, the power model established on one platform is not

necessarily extensible. For example, Goel et al. differentiate PMCs in their power model for

four platforms. Additionally, sampling PMCs usually means system overhead, which can be

overwhelmed when the number of PMCs becomes large.

On the other hand, in order to describe the power characteristics of a given platform

throughout, a fine-grained power model usually is trained by a large set of benchmarks. For

example, Bertran et al. [12] develop approximate 97 benchmarks to exercise the power com-

ponents on a single CPU. As a result, the training process could be unexpected long.

The production of this section is a set of power models with three basic features. First,

the models have to provide acceptable high accuracy. Second, the parameters of the power

models can be retrieved through a simple training procedure, which can be applied practically.

In addition, the model input, the total number of PMCs, has to be maximally reduced to avoid

multiplexing counters.

4.2.1 Observations

Leveraging PMCs, the most obvious method is to discover the possible correlation between

a specific PMC and the power dissipation. The training benchmarks fulfill the task of PMCs se-

lecting according to correlation coefficients. After obtaining training data, usually, researchers

develop a linear regression model to derive a power model. Previous approaches concentrate

on the mathematical methods to eliminate outliers, and to achieve high accuracy. However,

few of them focus on direct factors influencing power dissipation, such as frequency.

One example is the argument on IPC. Indeed, an IPC value does reflect the power dis-

sipation with high correlation coefficients for various workloads. However, the relationship

between them can be weak under certain circumstances. We generate IPC ranging from 1

to 0.01 by continuously executing a single X86 instruction as Figure 4.1(a). The results of

the corresponding CPU power dissipation are shown in Figure 4.1(b). The overall correlation
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Figure 4.1: Different instructions with their IPCs and power dissipation.

coefficient is 0.41 in this case. Nevertheless, the standard deviation of power dissipation is

only about 0.067W for the given range of IPC between 1 to 0.01. Rarely could IPC make a

representative factor of power dissipation in the similar scenarios.

However, other than those extreme benchmarks, regarding real applications, values of some

PMCs reflect the power dissipation well. As Figure 4.2 illustrates, the IPC and the power

dissipation present the correlation coefficient as high as 0.98 for the NAS parallel benchmark

suite.

Given the above results, we observe that the same PMC possibly has changeable effects

on the power dissipation prediction. One possible solution could be to profile different PMCs
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for each task and then select the most related ones, which is probably impractical in reality.

In order to minimize the uncertain effects from PMCs on power estimation, we attempt to

find an overall frame restricting the power estimation range. Inspired by [124] and based on

our observation, the operating frequency fits the position well. Figure 4.3 shows the power

behavior of four NAS parallel benchmarks executing under the frequency of 2.34GHz and

2.00GHz. Clearly, we are able to find the boundaries separating power dissipation, regardless

of the types of the benchmarks, according to its operating frequency; thus, we establish a power

model using frequency as the first level intuitively.

Generally speaking, we expect the power model to fully explore the possible relations be-

tween PMCs and power dissipation. Besides, if PMCs fail to provide positive information, the

model will be able to minimize the disturbance introduced by it.

4.2.2 Methodology

In this section, we describe the methodology that produces the power models. In short,

our approach follows the common modeling steps: defining the model input, generating mi-

crobenchmarks, training the power model, and applying the power model.

Considering inputs, the essential strategy is trade-off. On one hand, high accuracy necessi-

tates more information from PMCs collected as inputs. On the other hand, the less PMCs we

use, the more flexible and applicable the power model could be. We adopt only one PMCs to

preserve the simplicity and to demonstrate the effectiveness of our two-level modeling. The

PMC utilized in our study is IPC, as aforementioned. We design microbenchmarks carefully

after selecting the model inputs. Totally, we test over 30 microbenchmarks stressing the CPU.

By carefully reviewing, adjusting, and filtering them, we decide to choose 12 benchmarks for

the training purpose because enough information can be provided from executing them. The

training process is highly related to frequencies and IPC; however, we do not use linear directly,

which most of the others do.

It should be noted that the main differences of our methodology from previous work are
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three-fold: we incorporate frequency information in the power model, we use minimum size

of PMCs, and the methodology can be applied to other platforms easily.

Basically, we deploy IPC along with frequency as the model inputs. Actually, a strong

relationship between Instruction Per Cycle (IPC) and power dissipation is established in previ-

ous work [28, 84]. Although, in most cases, an IPC value is able to reflect the overall power

dissipation, there are two issues by using IPC solely. First, different micro-operations might

have various IPC values but similar power dissipation. For example, usually Floating Point

Unit executes instructions much slower than Integer Arithmetic Unit nevertheless the power

behaviors of them are similar. This problem can be easily solved if we consider each CPU

component, such as FP, INT, and BPU (Brunch Prediction Unit) separately. In our case, it is

not an option because we target on minimizing the PMCs in the model. Second, as the afore-

mentioned, because power behaviors of a CPU are mainly limited by its operating frequencies,

by using IPC, there is some marginal effect. As the IPC becomes large or small enough, the

effects of IPC on power dissipation drop noticeably.

Our solution for the first issue is using IPC as a second level power indicator that tunes

the estimation results obtained according to operating frequencies. In order to eliminate the

marginal effect, we divide benchmarks into different categories based on the IPC values; then,

we collect data and derive the model separately for each category. We demonstrate our ap-

proach as follows in detail.

Power Modeling

We denote the CPU frequency as F . Assuming that a CPU supports various frequencies, fi,

i = 1,2,3...n, we attempt to obtain the power dissipation information, P( fi), for each frequency

fi. Given a set of training benchmarks T with its sub benchmarks t j, j = 1,2,3...m, executing

under frequency fi, we denote the power dissipation as P(t j, fi) respectively. We calculate

P( fi) as the median of {P(t1, fi),P(t2, fi), ......,P(tm, fi)}; thus P( fi) is resistant to outliers
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statistically. Besides, we represent IPC of each benchmark as IPC(t j, fi). Similarly, the median

IPC value of all the training benchmarks is defined as IPC( fi). In most cases, the benchmarks

with the median value of P(t j, fi) also contribute the median value of IPC(t j, fi). We describe

P( fi) and IPC( fi) as power pilot for frequency fi.

Second step, based on the power pilot, we compute ΔP(t j, fi) as the difference between

P( fi) and P(t j, fi) for each training benchmark. Similarly, we calculate ΔIPC(t j, fi) as the IPC

difference of training benchmark ti to the median value.

ΔP(t j, fi) = P(t j, fi)−P( fi) (4.1)

ΔIPC(t j, fi) = IPC(t j, fi)− IPC( fi) (4.2)

Targeting on predicting ΔP(t j, fi), we use ΔIPC(t j, fi) as model input to derive linear re-

gression parameters, Pinct( fi) and PΔ( fi) as Equation 4.3 shows. The final predicted power

dissipation is shown in Equation 4.4. We simply need to change ΔIPC(ti, fi) to be the actual

ΔIPC(ai, fi) before applying the model to the ith benchmark from task set a1,a2,a3, ...an.

ΔP(t j, fi)pret = Pinct( fi)+PΔ( fi)∗ΔIPC(t j, fi) (4.3)

P(t j, fi)pret = ΔP(t j, fi)pret +P( fi) (4.4)

It is easy to notice that the most majority of power dissipation is determined by P( fi), which

stems from frequency characteristics forced on each training set although the regression model

is applied to ΔP(t j, fi)pret . Because Pinct( fi) and PΔ( fi) usually are small enough, we limit the

inaccuracy from those power-irrelevant IPC values while reserve the positive relation between

most IPC values and power dissipation.

As aforementioned, one shortcoming of using IPC solely is the low accuracy produced
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when the values of IPC are either too high or too low. In order to constrict this marginal ef-

fect, we have to manipulate the given training benchmark set accordingly. First, we order the

training set T with descending IPC, which yields Tordered . Second, we divide Tordered into three

categories with respect of their IPC values. Heuristic results, based on the average accuracy

provided, show that the separating points locate approximately at 0.87 and 1.86. As a result,

there are three groups of benchmarks: the one with relative low IPC, Tlow, with average normal

IPC, Tnormal , and with relative high IPC, Thigh. For each group, we apply the same method to ob-

tain P(tIPC level, fi), IPC(tIPC level, fi), Pinct(tIPC level, fi), and PΔ(tIPC level, fi), where IPC level

represents low, high, and normal.

We use an accumulative approach for modeling multiple cores based on the assumption that

each core has similar power behavior. Therefore, we apply the single core model to each core

in the system. Specifically, we express the total power dissipation estimation as the follows:

P(a j, fi)pret total =
k=cores

∑
k=1

(ΔP(a j, fi,k)pret +P( fi)) (4.5)

where a j is the target benchmark. ΔP(a j, fi,k)pret is generated at per core level because

different cores might have different ΔIPC(ti, fi,k). Fortunately, the modern multiple proces-

sor supports per core level PMCs. According to the modern processor architecture, however,

the formula needs to be modified because P( fi) accounts for the power consumed by shared

resources that should not be replicated. One example of the shared resources is L2 cache. To

recalculate it, we introduce another parameter that should be determined at the training stage,

Pshared(k). In order to retrieve information on Pshared(k), we re-execute training benchmarks on

k cores, and select median value as Pshared(k) for each k. The values of Pshared(k) are different,

which is determined by the total number of cores utilized by a task simultaneously. The bigger

k is, the larger Pshared(k) could be. The final formula to estimate the power dissipation of a j of

a multicore processor is the following:
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P(a j, fi)pret total =
k=cores

∑
k=1

(ΔP(a j, fi,k)pret +P( fi))

=
k=cores

∑
k=1

(Pinct( fi)+PΔ( fi)∗ΔIPC(a j, fi,k))

+
k=cores

∑
k=1

P( fi)−Pshared(k)

(4.6)

Design Microbenchmarks

The power model we proposed decides which benchmarks we need. This is an important

step because inappropriate choices will lead to inaccuracy. First, a wide range of IPC value

needs to be covered by training benchmarks. It is extremely important to test two margins

of benchmarks with smaller or larger IPC values since we observe different power behaviors

affected by IPC at those ranges. Second, an even distribution of benchmarks according to their

IPC values is preferred. In the power model, we divide training benchmarks into three groups

based on IPC values. It is more informative if the number of training benchmarks resides in

each group equally.

However, it is unrealistic to consider all cases especially we only use one PMCs. Even

worse, there is no information about which subunit is exercising by only profiling IPC. For

example, two workloads stressing integer and cache respectively probably have the same IPC

values, yet the integer benchmark might consume less power than the cache operation does.

Besides, the power dissipation is also affected by the inputs. The same FFT algorithm might

produce more power dissipation for a larger input size. In conclusion, it is critical to generate

proper training workloads covering a sufficient variety CPU activities for a linear regression

based approach.

In our study, we implement totally 36 benchmarks exercising various CPU components,

such as INT, FP, and BPU. In order to emphasize the simplicity and applicability of the power
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Microbenchmark Description Approx. IPC

INT(1) Arithmetic Integer Operation 0.50

INT(2) Arithmetic Integer Operation 1.62

INT(3) Arithmetic Integer Operation 2.65

FP(1) Arithmetic Floating Point Operation 0.48

FP(2) Arithmetic Floating Point Operation 1.12

FP(3) Arithmetic Floating Point 1.43

Cache(1) Cache line Reading 0.12

Cache(2) Cache line Reading 2.15

BP Brunch Prediction 1.00

IS Insertion Sort Integers 1.77

ISF Insertion Sort Floating Point 2.26

QUICK Quick Sort Integer 1.01

Table 4.1: Training benchmarks suite.

model, we select 12 workloads covering maximum subunits, occupying a wide range of IPC

values, and fairly even distributed. We list the benchmarks utilized in our study as Table 4.1.

In general, the workloads exercise most of the processor subunits separately. The last three

benchmarks utilize several components together to form mix benchmarks.

In the next section, we will discuss the method of relating the power behavior to the source

code level profiling. Basically, based on the power model proposed, we design APIs locating

source code function blocks according to the estimated power dissipation.

4.3 SPAN Design and Implementation
We are now in a position to automate the process of power profiling and correlate power

dissipation to source code functions. We argue that it is crucial to design a PMC-based power

estimator to association with source code based on two reasons. On one hand, it is conve-

nient for software developers to identify their source code with actual power dissipation phases

before any power/energy optimization. This will give developers more detail information of

where their

power/energy optimization should target on. On the other hand, PMC-based approach is rela-

tively easy to apply in reality. On the contrary, hardware instrumentation definitely offers high

accuracy; however, in practical, this method is limited due to hardware requirements.
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We design a tool, SPAN, to provide live, real time power phases information of running

applications. Generally, given a power model, there are two methods to enable synchronization

between power dissipation and source code. The first approach is run-time instrumentation at

binary-level. This method usually has a high granularity control over the execution. Because

our approach mainly assists developers, we adopt the second option that specifies a suite of

external API calls to correlate power estimation with application source codes. We refer to

it as source code level instrumentation. The advantages of this method include the following

items: lower overhead, applicability, and independence against instrumentation tools, such as

PIN [1]. However, our approach requires developers to add some code manually to call the

SPAN APIs.

The basic flow of the SPAN tool is illustrated in Figure 4.4(a). The two inputs of SPAN

are the application information and PMC values. At the application level, the app information

and the estimation control APIs are passed to the control thread through the designed SPAN

APIs. Utilizing the run-time PMC values by calling the system call, the analyzer thread applies

the power model proposed in Section 4.2.2 to estimate the power dissipation. Finally, the

SPAN outputs a figure of estimated power dissipation represented by different colors, such as

Figure 4.4(b) shows.

In order to support the proposed mechanism, it is critical to provide a set of flexible APIs

to applications. We show some of the designed SPAN APIs in Table 4.2. Currently, we imple-

mented a preliminary C library of these APIs.

Given these APIs, the SPAN works as follows. First, we prepare a default file describing a

set of power model parameters and an estimation frequency by calling span c-

reate(). Once the targeting application runs, PMCs are opened for each core respectively by

calling span open(); then, a SPAN control thread, which stores the row PMC information and

the application function information (e.g., function name and start time), is invoked before each

profiling function. The recording continues until we call the span stop or span pause(). The



www.manaraa.com

69

APIs Description

span create() Prepare a power model profile which records basic parameters

span open() Initialize a SPAN control thread and targeting PMCs

span start(char* func, char* log) Record the targeting application function and specify the log

file name

span stop(char* func, char* log) Stop the power estimation for a specified app function

span pause() Temporally stop reading PMCs

span continue() Resume reading PMCs

span change rate(int freq) Shift the estimation rate, basically this methods control the

PMC sampling rate

span change model(float* model, File* model) Modify the model parameters in the model file according to the

platform

span close() Close the opened PMCs and SPAN control thread

span output(char* log, FILE* power) Invoke SPAN analyzer thread and produce the detailed power

estimation information with respective to the profiled functions

to the destination file

Table 4.2: SPAN APIs.

output is generated and stored into another file finally.

4.4 Validation and Evaluation
We mainly evaluate our approach in two categories. First we need to discuss the accuracy

of the power model. The second part covers the evaluation of SPAN on the source code level

power estimation.

4.4.1 Environments

Specifically, we evaluate the power model on two different platforms, Asus intel 4 and

HP amd 6, where 4 and 6 represent the number of cores on each CPU respectively. The

hardware configuration of each platform can be found in Table 4.3. We estimate the power

generated by the SPEC2008Cjvm [130] benchmarks to validate the power model. We use

Java version 1.6.0 18 on both platforms to launch each benchmark. The warm time is set to 5

minutes, and the iteration time is 10 minutes. We change −bt option to change the number of

threads. We plan to restrict the CPU affinity to one core during the training process originally,

which will minimize CPU migrations and provide a set of more optimized model parameters,

but the assumption of no CPU migration conflict with the reality. Therefore, the system does

not restrict CPU affinity in all of our training and evaluation process. The PMCs values are

collected using the kernel system call [32], NR perf event open(), which starts to be available
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Application

SPAN
API

SPAN Control Thread

Perf System Call to Control
PMC Montoring

SPAN Analyzer Thread
Output

Example Code:

SPAN_create();
……
SPAN_open();
…...
SPAN_start (foo1 ,foo1_log);
foo1();
SPAN_stop(foo1 ,foo1_log);
……
SPAN_output(foo1_log, power)
…….

(a) The flow chart of SPAN.

Time

Example Output:

foo1() foo2()

(b) The example output of SPAN

Figure 4.4: Desgin of SPAN.



www.manaraa.com

71

Platform Asus intel 4 HP amd 6

Model Asus Essentio CM5570 HP Pavilion Elite HPE-000

CPU Intel Q8200 AMD Phenom

Core Frequencies 2.34GHz,2.00GHz 2.6GHz, 2.0GHz, 1.4GHz

# of cores 4 6

Memory DDR3 6GB DDR3 8GB

OS Linux 2.6.31 Linux 2.6.31

Table 4.3: System configurations.

in Linux kernel version 2.6.31.

Leakage power becomes a non-trivial portion of the power budget on modern superscalar

processors. Experimental results show that leakage current increases exponentially with the

supply voltage [124]; however, given a specific CPU frequency and supply voltage, as the

input of our model, the leakage power is fixed. Besides, our power model mainly focuses on the

dynamic power dissipation generated by a given workload. Therefore, we do not incorporate

the leakage power in our power model.

In order to minimize the temperature effect on power, after each valid run, we set 10 min-

utes as cooling time. The static power is measured before each execution, and we guarantee

the variation of the static power is less than 5% so that the results are comparable. It is worth

noticing that there only exists neglectable static power variation for different operating frequen-

cies [27]. Meanwhile, we use hardware measurement to collect power dissipation information

on the processor as well. The results are compared with the estimated power dissipation in the

next section.

4.4.2 Power Model Evaluation

The first step of using our power model is to generate a set of parameters from the training

benchmarks. Some of the detailed parameters we derived from the training process are listed

in Table 4.4. We can easily observe that the effects of IPC on power drop considerably at both

margins: the IPC below 1.0 and beyond 2.0.

We evaluate our model in terms of accuracy. More and more research on power estimation
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System Settings P( fi) IPC( fi) Pinct( fi) PΔ( fi) Pshared(k) IPCrange

Asus Essentio CM5570, single-core, 2.36GHz

15.74 0.49 -1.28E-15 1.79 0 0 ∼ 1.0

19.47 1.28 -0.60 4.41 0 1.0∼ 2.0

21.52 2.21 1.50E-15 1.49 0 beyond 2.0

Asus Essentio CM5570, two-core, 2.36GHz

15.74 0.49 -1.28E-15 1.79 10.44 0∼ 1.0

19.47 1.28 -0.60 4.41 10.44 0∼ 2.0

21.52 2.21 1.50E-15 1.49 10.44 beyond 2.0

HP Pavilion Elite HPE-000, single-core, 2.6GHz

25.55 0.45 0.18 0.87 0 0∼ 1.0

27.26 1.35 -0.10 1.58 0 0 ∼ 2.0

27.50 1.99 0.06 -0.18 0 beyond 2.0

HP Pavilion Elite HPE-000, two-core, 2.6GHz

25.55 0.45 0.18 0.87 18.84 0∼ 1.0

27.26 1.35 -0.10 1.58 18.84 0∼ 2.0

27.50 1.99 0.06 -0.18 18.84 beyond 2.0

Table 4.4: Derived power model parameters.

techniques argues that accuracy is not the only aspect we should focus on [12, 49]. However,

other characteristics, such as responsiveness, depends on acceptable accuracy. In addition, the

power model usually provides reasonable responsiveness if it has high accuracy. We run SPEC

2008Cjvm benchmarks with multi-threads on possible frequencies to collect data. The errors

are reported for the whole processor.

Through Figure 4.5(a) to 4.5(d) shows the percentage error from a single core to the max-

imum four cores running 10 different benchmarks on Asus intel 4. As the figures illustrate,

generally, there is an incremental relationship between error rate and the number of cores. The

possible reason is that we do not consider the shared resource in a fine granularity in the power

model due to the PMCs limit. In addition, the inter-core communications, which are another

major source of power dissipation, cannot be captured by the power model simply deploying

one PMC. Given such limited information, our model achieves 5.17% absolute error rate on

average, with standard deviation of 5.40%.

Figure 4.5(e) summarizes the estimated error under frequency 2.00GHz on Asus intel 4.

Our model is able to achieve smaller error rate since the power dissipation for each benchmark

decreases and falls into a narrow range, which is less unpredictable than the scenario of high

frequency. The power dissipation of some particular benchmarks, such as crypto.aes, presents

a low correlation coefficient to the IPC and extensive usage of other processor components,

such as brunch prediction units.

Similarly, from Figure 4.6(a) to Figure 4.6(d), we report experimental results of our power
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Figure 4.5: Estimation error of SPEC 2008Cjvm on Asus intel 4.
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(a) 2.66GHz, one-core
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(b) 2.66GHz two-core
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(c) 2.66GHz, four-core
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(d) 2.66GHz, six-core
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model on HP amd 6. We control the maximum and average absolute error rate to 11.26% and

4.46% respectively for up to the six-core scenario, with a vast majority of estimates exhibits

very small errors. Besides, it is worth mentioning that our model does not consistently under-

or over-estimate the power across the benchmark suite. We summarize the experiment results

on frequencies of 2.00GHz and 1.40GHz in Figure 4.6(e) and 4.6(e) respectively, with average

error rate of 3.14%.

4.4.3 SPAN Evaluation

After illustrating the error rate of our model, in this subsection, we discuss the effectiveness

of SPAN in details. As it was noted in Section 4.3, the SPAN is a source code instrumentation

technique that keeps tracking power dissipation of each function block. We mainly evaluate
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two aspects of the SPAN, the overhead and the responsiveness. We focus on two benchmarks

for the testing purpose. One is the FT benchmark from NAS parallel benchmark suite. An-

other is a synthetic benchmark that we designed with the combination of integer operation, PI

calculation, prime calculation, and bubble sort.

The overhead of instrumentation on both testing benchmarks is negligible. First, we mea-

sured the execution with and without the SPAN instrumentation for ten times each. The differ-

ences of execution time are within 1% on average. The reasons of low overhead are as follows:

the instrumentation is at the source code function-level, which barely adds interruptions dur-

ing executions; the PMCs used in the model are limited to the minimum values, which further

reduce the computation and communication cost of SPAN. Second, we measured the power

dissipation of the benchmarks with and without underneath SPAN threads that record counter

values. The overall variance across the whole execution lies within 2% in ten valid runs. Con-

sidering other factors, such as temperature and power supply variation, 2% is a reasonable

range in reality.

Though there is no standard method to evaluate the responsiveness of a power model, One

of the simple and effective approaches are comparing the continuous measured and estimated

power values. We utilize two multimeters storing the power dissipation of the target computer

consistently into an assistant computer with the interval of one second. The benchmarks are

executed on the Asus intel 4 platform with the SPAN source code instrumentation to estimate

the power. We plot the results in Figure 4.6. It is easy to observe that the estimated power

is closely related to the measured power dissipation at the overall shape. We also mark the

corresponding benchmark functions in each figure. The first iteration of benchmark FT mainly

consists of two functions, compute initial conditions() and f f t(); then, the rest iterations fol-

low the same procedure, which can be clearly observed from Figure 4.6(f). But the estimations

present a certain level of delay due to the rapid function changes in the source code. Moreover,

in Figure 4.6(g), we deliberately insert sleep() function between each sub benchmark in the
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Figure 4.6: Results of the SPAN evaluation on two benchmarks.

synthetic workload in order to distinguish each one of them easily. We achieve the error rate as

low as 2.34% for the two benchmarks on average.

4.5 Related Work
Since we have already summarized a significant amount of work on power profiling, in this

section we describe several previous efforts that are most related to SPAN from two aspects:

PMC-based power models and program power behavior analysis.

4.5.1 PMC-based Power Models

Hardware performance counters are a set of special-purpose registers built into modern

microprocessors to store the counts of hardware-related activities within computer systems.
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Researchers often rely on those counters to conduct low-level performance analysis or tuning.

Frank Bellosa is one of the first proponents of applying PMCs to investigate the energy

usage patterns and finding the correlation of hardware events and system power [10]. He uses

information about active hardware units to establish a thread-specific energy accounting, and

then he uses the power information for energy-aware scheduling policies. Kadayif et al. design

a tool called Virtual Energy Counters (vEC), which is built on top of the Perfmon user library.

Their power model mainly considers cache related performance counters. In [67], Isci et al.

divide the processor into 22 function units and finds the relationship between the counters and

those units. Although their results are very accurate, it is hard to be used on new platforms.

G. Contreras and M. Martonosi [28] discover the power-IPC correlation and use five PMCs to

estimate the power of workloads running on different CPU frequencies.

In [106], Powell et al. proposes a methodology to reduce the number of performance coun-

ters. They estimate the hardware activity events of several microarchitectural structures. Then,

they associate the activity events with the power dissipation of such structures. Bertran et

al. [12] demonstrate an alternative approach of using PMCs on CPU power estimation. Rather

than directly deriving a power model using PMCs, they propose a method to treat each compo-

nent of CPU separately, such as FE, INT and FP. Combining all the training parameters, they

develop a fine-granularity power model. However, the training process is time-consuming to

be extensively used in practical. In addition, the power model highly depends on the microar-

chitecture of the CPU.

Our main difference from all these works is that we combine the CPU frequency scaling

and multicore features in the power model, which fits the trend of microprocessor design re-

cently. Besides, our power model only employs one IPC. Other models [12] can achieve better

accuracy and less variance compared with ours by collecting a number of counter values and

training with more microbenchmarks, but barely can their models be applied to reality because

of the model complexity.



www.manaraa.com

78

4.5.2 Program Power Behavior Analysis

Understanding program behavior is at the foundation of computer architecture and program

optimization [121]. As energy consumption becomes one of the most important design consid-

erations, researchers also evaluate the power and performance during the software development

period. Program power behavior analysis cannot only help us optimize the energy efficiency

of the applications, but also help the systems intelligently schedule the tasks by using new

power-aware scheduling algorithms [3, 77].

PowerScope [42] is one of the first work that map energy consumption to program structure.

They develop a user-level daemon process and modify several system calls of the NetBSD ker-

nel to sample process activity. Furthermore, they monitor energy consumption with collected

data via a group of multimeters that connected to the power source. Finally, synchronization

with the System Monitor is provided by connecting the multimeters external trigger input and

output to pins on the parallel port of the profiling computer.

Similar with PowerScope, Ge et al. use their platform called PowerPack, a hardware-based

power measurement and profiling platform, to analyze the application power behavior [46].

They insert a set of user-level APIs, such as pmeter start session and pmeter end session, be-

fore and after the code region of interest to map the power profile to the source code. Fur-

ther more they analyze the power efficiency on multi-core platforms. The method they use to

map power profile into program code is similar to our work; whereas, our approach is a pure

software-based approach, and do not employ any hardware.

Isci et al. use the similarity matrix approach of [121] to deduce power phase behavior over

the program runtime. Then they use component-based power breakdowns, computed by their

power models, to identify power phases of programs. Their power model, however, is difficult

to obtain because of PMCs limits.
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4.6 Summary
Power measurements and profiling have already been studied extensively at different levels;

however, more investigations are needed in the following two areas: improving power profiling

techniques and using these strategies in power-aware software design.

Accuracy is not the only important requirement for power measurements and profiling.

We envision that simplicity and adaptability are also very interesting aspects. Simple power

models are needed to supply live power information for systems, otherwise the overhead will

be too high to be used. In addition, as the number of cores on a single chip keeps increasing,

on-chip network fabrics become one of the main power dissipation resources. Thus, future

research needs to consider this unit and reevaluate the power indicators that are currently used.

Furthermore, we still need to break down the power dissipated on shared resources such as

caches, and find suitable indicators to break down higher level power information into lower

levels.

In this chapter, we present a novel practical power modeling method based on performance

monitoring counters (PMCs) by employing one PMC and 12 training benchmarks on two re-

cent multicore processors. Based on the model, we design and implement SPAN to map the

run-time power dissipation to application functions. We evaluate both the power model and

SPAN on two modern multicore systems. Despite the limited information provided by only

one PMC, we achieve an absolute error rate of 5.17% and 4.46% on the two platforms by us-

ing benchmarks from SPEC2008Cjvm suite. In addition, it shows fairly stable accuracy under

different frequencies. We also collect empirical data to validate the SPAN tool. Using the FT

benchmark from NAS Parallel benchmark suite and the synthetic workload, we reach accuracy

as high as 97% on average. We achieved our second goal in this chapter.

Though the power model and SPAN proposed in this chapter is able to provide function

level power dissipation information, especially when the target functions are available, SPAN

has its limitation when facing the challenges during the instrumentation and profiling process.
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For example, if the target functions are unknown, manually instrument every single function

in a workload is not practical. In order to overcome those challenges, we introduce Safari, an

automated profiling process in the next Chapter.
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CHAPTER 5

SAFARI: FUNCTION-LEVEL POWER ANALYSIS

While in the previous chapter, we propose SPAN, which provide a set of APIs to generate

function level power profiling results. However, SPAN has its limitations. In this chapter, we

describe and implement an application function (subroutine call) level profiler, Safari. It can

be used to generate power profiles of each function in an automatic manner. The experiment

results using NPB parallel benchmark suite show that Safari is able to collect function level run-

time information with overhead (16% on average) comparable to gprof. The power profiling

results can be used for code optimization, power-aware scheduling, or even computing resource

billing for future research.

5.1 Introduction
Different from hardware and system design and analysis, the impact of software on the

power dissipation of a computer system has been overlooked. In fact, as the user of hardware

resources, software has equivalent or even more effects on the power dissipation of a whole

system. For example, Pathak et al. introduce a new type of bugs, energy bugs or ebug [101],

on smartphones. Their results show that 35% of energy bugs stem from software, either the

OS or the applications. Nevertheless, the authors pointed out narrowing down the root causes

of ebugs to a software component is one of the crucial steps to fix energy bugs. A recent study

shows that software bloats introduce excessive resource usage in large software systems [13]

as well. Better understanding of software behavior associated with resource usage is crucial to

detect similar scenarios. In addition, workload phases provide interesting information for per-

formance optimization and they are usually related to functions/methods [47]. Function level

power profiling is supposed to reveal power behavior along with resource usage information.

These information would help developers to understand and leverage power dissipation in a
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computer system from a new angle. However, information scarcity of dynamic power dissipa-

tion impedes developers’ ability to produce more energy-efficient software. Even though the

latest processors based on Sandy Bridge or Ivy Bridge Architecture provide power information

from hardware counters, the power dissipation within each program block is still unclear. In

addition, power model based approaches are still effective to estimate the power dissipation of

other components, such as memories.

Regardless of the potential influence of software on power dissipation, its impact is usually

underestimated. For example, most profiling tools are used to measure performance rather than

power or energy. In addition, among the few available tools that estimate power dissipation,

most of them do not consider the control flow of a program, which loses the insight of the

execution of a program. Given such scarce information, it would be difficult for developers to

evaluate or optimize the power usage of their programs.

Run-time profiling techniques usually deploy mechanisms to collect information from the

target systems. Typically, in order to obtain more detailed results, a profiling process generates

overhead. Consequently, a profiling process could disturb power measurement. In addition,

the inaccuracy due to overhead can be enlarged because the collected data for power profiling

usually need to be processed by power models. For example, Linear Regression is a commonly

used technique to generate estimated power from collected run-time information [15]. More-

over, the sizes of applications are growing rapidly, which posts more challenges to analyze

software power behavior.

In this chapter, we present a software function level power profiling tool, Safari. The goal

of Safari is to provide function level power analysis while minimizing profiling overhead. In

order to use Safari, first, we compile a target application to insert instrumentation code for each

function. Then, run-time information is collected for the resource usage during the execution

of functions. Finally, we apply an off-line analysis based on a selected power model to generate

function power profiles.
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Figure 5.1: Power dissipation of IS.A on a Intel Core2 Quad 8200 processor.

The rest of the chapter is organized as follows. We start the chapter by presenting a motivat-

ing example in Section 5.2. In Section 5.3, the design considerations of Safari are described,

followed by the evaluation results shown in Section 5.4. Related work is discussed in Sec-

tion 5.5. At last, we describe future work and conclude the chapter in Section 5.6.

5.2 Motivating Examples
Usually different functions in a program have distinct power behavior. For example, we

retrieve the function profile of IS.A benchmark from NPB 3.0 benchmark suite. There are three

major steps in IS.A: create seq(), rank(), and full verify(). The power dissipation of

IS.A is closely related to the three major functions as shown in Figure 5.1. We use two 0.005

Ohm current sense resistors (CSR) series connected to the 12V cable from a standard ATX2.0

power supply. The CPU current is measured by reading the voltage on the resistors using a

NiDAQ 9205 unit and dividing the resistor value. We can calculate CPU power dissipation

using the measured current and voltage values.

Given distinct power dissipation information along with application execution, one of the

usage of power profile is to guide run-time power management. In this example, rank()

function, which produces approximate 0.15 Instructions Per Cycle (IPC), is less CPU-bound

during its execution (IPC values are used broadly as CPU power model input [137]). Systems

could provide more fine-grained power management or scheduling schemes if resource usage
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information can be retrieved beforehand. For example, we are able to use DVFS to scale down

CPU frequency from 2.34GHz to 2.00GHz during the execution of rank(). As a result, we

achieved 24% energy saving with 3% performance loss. On the contrary, 10% energy saving

is achieved with 10% performance loss if we scale down CPU frequency during the execution

of create seq(), which has a higher average IPC value during its execution (around 0.6).

In addition, we observe multiplication operations are intensively used in the source code of

the create seq() function, while the rank() function mainly contains branch-prediction and

data movement operations. Hence, it is possible to utilize profiling results to guide system

power management in a fine-grained fashion.

Based on this example, we observe that software characteristic is an indispensable part to

analyze the power dissipation of a computer system. Safari attempts to accurately estimate

the power dissipation of a function. Our rationale of using function level profiling includes

the following aspects: first, application subroutines/functions are the basic units of executing

tasks; second, function level profiling guarantees appropriate scale for optimization: coarser

than the instruction level yet finer than the process or thread level; third, as the module design

is one of the common methods to develop large scale software, function level power profiling

fits this pattern well.

5.3 Method
Given the fact that power dissipation of function invocation is one of the major break points

to understand software dynamic power dissipation, it is worth developing a profiling mecha-

nism to generate function level power profile. The goal of Safari is automatic power profiling

based on per function resource usage with restricted overhead.

In order to achieve this goal, there are three major points need to be considered. First,

profiling overhead must be minimized. Although functions can be treated as the basic units to

generate a profile, a majority of functions only accomplish tiny tasks, such as printing times-

tamps or reversing a string, which hardly present any potential for optimization or tuning in
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most cases. However, profiling them consumes as much system resources as profiling major

functions. For example, a create seq() function invokes randlc() millions of times in the

IS benchmark. As a result, instrumenting and profiling randlc() function produces much

more overhead than profiling create seq() along. Moreover, function power behavior varies

according to different input data and execution paths. It is important for function level power

profiling to reflect those characteristics. Additionally, the core part of power profiling is power

models [12], which usually utilize system information and Performance Monitoring Counters

(PMCs) as input. In this case, the collected information has to be associated to each function

in an application.

5.3.1 Overview

Figure 5.2: An overview of the profiling process.

The proposed profiling procedure is demonstrated in Figure 5.2. First of all, the execution

of an application is divided into different parts. During the warm-up period, no profiling data

are collected since usually only start-up activities, such as initializing some buffer, are executed

during this period. The rest of execution is divided into different sampling periods. During a

sampling period, only a certain number of selected functions are profiled. As a result, functions

are randomly grouped into several categories. Only one instance of a function is profiled even

the same function can be executed more than once during the same sampling period. Target

function groups are switched as time elapsed. Safari collects data exactly before and after a
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function being executed. Off-line analysis generates power profile based on a predefined power

model. We will discuss the details of the profiling procedure in the following sections.

5.3.2 Function Level Power Profiling

Instrumentation Automation To instrument an application, there are two commonly used

methods. One is to design a set of APIs that control the procedure of data collection at run-

time [137, 46]. The other approach is automatic instrumentation using some available com-

pilation tools, such as PIN [1]. In a considerable large program, there can be more than ten

thousands function prototypes. The goal of function level power profiling is to locate the rel-

ative power hungry part of source code. Each function block can be a candidate if we treat

the whole program as a black box, which means all of them need to be considered. It takes

excessive human efforts if we instrument each function manually. As a result, we adopt the

second approach because of its simplicity to developers. Whereas, automatic instrumentation

has its disadvantage such as it dose not distinguish major functions and trivial ones. If we

simply apply this technique, the profiling process could cause unnecessary overhead. Safari

adopts several techniques to overcome this effect.

In the implementation of Safari, we use a function instrumentation utility designed for

GCC compiler, -finstrument-functions, to insert two profiling functions that will be in-

voked at every entry and exit of each function, namely, cyg profile func enter() and

cyg profile func exit() as illustrated in Figure 5.2. At run-time, in addition to execute

instructions in a normal function body, two profiling functions are attached to the both ends of

a function to collect per thread resource usage information.

Warm up Usually a system is not stable during the warm-up phase of an application.

For instance, buffers need to be initialized. In order to get accurate profiling results, the data

collection for profiling starts after a warm up period as shown in Figure 5.2. The total length

of warm up depends on a specific program and is tunable at start-up.

Overhead Reduction As described in the previous paragraphs, in order to use automatic
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instrumentation properly, the key issue is reducing instrumentation overhead. A power model

cannot be accurate if overhead dominate the collected data. There are two major concerns

associated with function level power profiling. First, a specific function can be invoked many

times during a relative short duration. This scenario affects not only power profiling of the

function itself but also other threads. For instance, context switch or other system activities

might rise. Second, nested function calls will add more inaccuracy to outsider ones. Automatic

instrumentation in Safari is based on insertion of two additional function calls at the entry and

exit of each function. If a function has many nested function calls, the collected model input

can be misleading (dominated by the inserted profiling functions).

The solution to the first problem is limiting the instrumentation of same functions. If a

function is invoked many times, Safari only samples one instance in order to eliminate the

overhead of repeated profile. However, this method has a potential problem: if the code path

in this specific function is changed due to different parameters or input, the power dissipation

of this function will also change. We solve this problem by using multiple records. In the

implementation, we use bloom filter [16] to record functions that have been profiled. Before a

function is to be profiled, Safari checks the bloom filter first. This method is named Safari 1

in the rest of the chapter. We demonstrate this idea in Figure 5.2. During a sampling period,

the same function call is only profiled once by checking the bloom filter. Although bloom filter

is able to control which function to be profiled, checking bloom filter itself consumes system

resources. Normally this part of overhead is acceptable unless an application has an extremely

high rate of function calls. In this case, checking bloom filter could dominate the profiling

process.

The total number of instrumented functions needs to be controlled in order to solve the

second problem. The overhead produced by nested function calls can be reduced if only a set

of selected functions are profiled during a certain period, which means other functions execute

normally without profiling. In addition, profiling module by module for a large program (for
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example, an application might contain over 10,000 functions) is extremely useful in order to

generate accurate power profiling results. Figure 5.2 shows that only a group of functions are

profiled for several sampling periods. By adjusting group sizes, overhead can be effectively

reduced. However, some functions might not get profiled if this method is used. Commercial

software, such as base station controller, is deployed to run for a considerable long period

(months or years). Statistically, most of functions can be profiled in such a setting. This

strategy is refereed to as Safari 2 in the evaluation. Functions can be grouped alphabetically or

according to their addresses. By adjusting the group size and the total length of the warm up

period, Safari is able to generate power profile for most of functions.

Multiple Records For a frequently invoked function, we should profile it multiple times

in order to generate correct power profiles because the code path of an application might vary.

As aforementioned, a function is only sampled once in a sampling period. The result can be

inaccurate if the code path changes afterward. The solution is profiling the same function dur-

ing different sampling periods as Figure 5.2 shows. Statistically, random sampling represents

characteristics of the whole sample space if the function has been invoked multiple times and

the execution is sufficient long (high confidence level). For example, random sampling can be

used to approximate the percentage of a path occurrence of a function with “if” or “switch”

statement in it if the profiling process is sufficient long.

Power Model In order to collect the input data for a power model, the following aspects

need to be considered. 1) availability: the input data should be easy to collect. Sometimes

system features constrain the data that are able to be sampled for a system. For example, usu-

ally two PMCs values can be collected simultaneously given the limited number of hardware

registers [132]. 2) complementary: the collected input data are most useful when they cover a

certain range of system events. Given the fact that the total amount of data can be collected is

limited in order to reduce overhead, it is important to explore the resource usage of a system as

much as possible. For instance, cache miss rate and bus transaction rate contains some over-
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Figure 5.3: Run-time profiling and information collecting.

lapping information because, most likely, CPU retrieve data from memory through bus if the

data cannot be found in the last level cache. In this chapter, we use OS level metrics and PMCs

as the model input:

• CPU utilization: it represents the average CPU usage during the execution of a function.

The value can be retrieved from Linux PROC File System.

• Last Level Cache miss rate: it partially quantifies how frequently memory has been used

for read and write. The value can be retrieved from PMCs.

• Context switch rate: we use the context switch rate to estimate the overhead of running

multiple processes in a system and attribute it to the functions in threads, during which

context switches occurred. The value can be retrieved from Linux procfs.

• Instruction per cycle (IPC): we use IPC values to calculate the effectiveness of a CPU.

A strong relationship between IPC and power dissipation has been revealed in several

articles [84, 137].

• CPU frequency: the frequency of CPU is directly linear related to power dissipation. The

value can be retrieved from cpufreq subsystem from Linux.
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In order to construct a power model, usually a mathematical method such as linear regression or

nonlinear regression is used. Given the model input, we use the following equation to estimate

power dissipation: P = a1 × cpuu +a2 × cache+a3 × cs+a4 × ipc+a5× cpu f +Pidle, where

{a1 . . .an} are coefficients to be determined by a set of training benchmarks. The power model

is not the major concern of this chapter. The model can be substituted with other models.

The method is summarized in Figure 5.3. Given the source code, 1) we compile it to

generate an instrumented version of executable. The source code needs to be compiled with

-finstrument-functions option. 2) The compiled object files are linked to a static library

provided by Safari, libsa f ari.lib. 3) Instrumented program collects run-time function resource

usage information. There is no information collected during the warm up period. Then, the

instrumented program determines if the encountered function has been profiled or not by check-

ing the bloom filter during one sampling period. In addition, functions are divided into groups

to reduce profiling overhead as well. The collected data are the input of the power model.

5.4 Evaluation
We mainly evaluate the effectiveness of Safari and the overhead introduced by function

level power profiling. The experiment platform contains a Intel Core 2 Quad 8200 CPU with

6GB memory. The processor is able to work on two frequencies, 2.00GHz and 2.34GHz.

All the results in this section are generated by setting CPU frequency to 2.34GHz. We use a

NiDAQ 9205 unit to record the CPU power dissipation from the 4 pin power supply on the

motherboard. The original sampling rate is 1KHz. IIR low bandpass filter is utilized to filter

noise. Data are re-sampled at the rate of 50Hz. We mainly use NPB3.0 benchmark OMP

implementation as the target applications.

First, we use Safari to sample CPU activities and produce CPU power profiles. We uti-

lize linear regression to construct the power model based on training benchmarks. The power

model is not the major concern because Safari is flexible to use different models and run-time

information. In order to obtain a stable external power measurement, we deliberately execute
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Figure 5.4: Estimation error rate of CPU power for different functions, the function names are

shown in Table 5.1.

Table 5.1: Activities inside the functions.
Benchmark Function IPC CPU utilization Cache miss rate

SP.A compute rhs 1.33 97 1162.15

CG.A conj grad 1.28 98 1603.67

FT.A fftxyz 2.08 98 438.06

MG.A mg3p 1.45 99 1045.28

the target functions into a infinite loop. The error rates are demonstrated in Figure 5.4. The

CPU power estimation has an average error rate of 6.85% for the selected four benchmarks.

The detailed activities inside each function are shown in Table 5.1. The accuracy of the col-

lected activities is closely related to the system resolution. For instance, CPU utilization is

obtained from PROC File Systems, which usually utilize jiffy as the basic unit. No correct in-

formation could be retrieved if a function’s execution time is beyond that resolution. However,

this constraint does not affect most major functions.

Table 5.2: Profiling overhead with Safari 1.

Type Benchmark Overhead (8/1) Overhead (4/1) Overhead (2/1) Overhead (1) Overhead (gprof) Call rate (calls/sec)

SER

CG 9.89% 6.91% 6.18% 6.04% 1.03% 68989.07

MG 1.89% 0.52% 0.78% 0.31% 0.21% 99.26

FT 1.49% 1.00% 0.93% 0.65% 0.50% 2719.37

EP 0.45% 0.27% 0.05% 0.33% 0.47% 0.33

LU 1.08% 1.01% 0.98% 0.75% 0.35% 14591.35

SP 11.09% 10.89% 10.85% 10.72% 1.29% 102004.79

BT 288.94% 288.14% 287.27% 286.48% 5.36% 3706727.08

IS 908.28% 907.25% 905.39% 911.84% 15.23% 11158773.53

OMP
4 threads

CG 42.21% 21.04% 11.90% 18.28% 47.54% 38134

MG 72.36% 39.02% 24.64% 15.54% 2.67% 175.93

FT 41.44% 32.04% 33.77% 20.99% 21.24% 77491.14

EP 1.34% 1.32% 1.21% 0.94% 0.39% 0.17

LU 2.11% 2.10% 1.78% 1.55% 1.55% 6347.21

SP 3.66% 3.48% 3.33% 3.03% 1.93% 15996.28

BT 309.58% 298.44% 292.87% 284.51% 63.56% 4936017.01

IS 508.08% 499.23% 490.79% 495.19% 124.48% 2905743.91

Next, we measure the overhead introduced by Safari. Because Safari has two policies to
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reduce profiling overhead, (one sample for a function inside a sampling period and different

function groups), we first only deploy the first mechanism, Safari 1. Functions are not divided

in Safari 1. The profiling results are shown in Table 5.2. The number of sampling periods is

also a factor affecting overhead since more samples for each function can extend total execution

time. Therefore, different sampling periods are used in this evaluation. For example, the

column labeled with overhead (1/8) means that there are 8 sampling periods totally during

the execution. In other words, maximum 8 samples can be collected for each function during

application execution. The overhead is measured as execution time when we explore profiling

techniques.

As Table 5.2 shows, the overhead generated by Safari is comparable with that of generated

by gprof in most cases. As expected, the overhead increases slightly as the number of sample

collected increases. Overall, the overhead generated by OMP version of benchmarks is higher

compared with SER cases for both Safari and gprof because the contention of recording infor-

mation in one single file for multiple threads. It is obvious that the overhead generated by BT

and IS benchmark is as high as 546% on average for SER and OMP benchmarks. The root

reason is because these two benchmarks have extremely high function calls rates. On average,

the function call rates of BT and IS are 203 times higher than that of the rest five benchmarks.

The BT benchmark has nested function calls that generate excessive overhead.

We deploy both Safari 1 and Safari 2 to reduce overhead for BT and IS benchmarks, es-

pecially. The number of sampling periods is denoted as n. We divide functions in a workload

into m groups, where m ∈ [1,n]∧ n = am,a ∈ Z. If m = 1, the effect of Safari 2 disappears.

This setting is for simplicity. The values of m and n are more flexible if execution time is long

enough. We evaluate Safari 2 on BT and IS benchmarks with at most one sample is collected

for each function. The results are shown in Table 5.3. For a fixed m value, as the n increase,

the total overhead increases as well since more samples are collected. If n is fixed, the total

overhead drops as m doubled because trivial functions might not be profiled with a bigger m
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value. However, major functions in both benchmarks are profiled because they usually iterate

for more than one time.

Table 5.3: Profiling overhead with Safari 2.

Type Benchmarkn/m 2 4

SER

BT
4 29.62% 26.45%

8 56.81% 42.32%

IS
4 16.86% 18.62%

8 24.30% 23.34%

OMP

BT
4 57.49% 45.65%

8 82.42% 54.21%

IS
4 14.14% 12.45%

8 28.4% 20.60%

In order to further measure the profiling overhead, we let Safari to profile only one function

repeatedly. The results are used to compare with the execution time without profiling. Besides

the aforementioned platform, we use a Cavium 6300 evaluation board as an example of embed-

ded systems. The board is equipped with six cnMIPS II processor cores, 4GB DDR3 memory

and some other co-processing units such as compressor and encrypter. The results are shown

in Table 5.4. The profiling overhead means that functions are instrumented and model input

data is collected. To profile a function once introduces about 0.8ms overhead on Cavium 6300

evaluation board. While, if a function is only instrumented without actual profiling (for exam-

ple, the program encounters a function that has already been profiled during a sampling period)

consumes much less overhead. Both of them is neglectable compared to a function body con-

ducting 512*512 matrix calculation which takes few seconds. In addition, as we avoid frequent

profiling in a given sampling period, the overall overhead is under restrict control.

Table 5.4: Profiling overhead

Platform Profiling over-

head (sec)

Instrumentation

overhead (sec)

512*512 matrix

mcl (sec)

Cavium 6300 8∗10−4 5∗10−7 7.4

Intel Core 2 4∗10−4 2∗10−7 1.4
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5.5 Related Work
Software power dissipation is directly related to dynamic power, which becomes an increas-

ing portion under the context of energy-proportional computing. However, only few research

projects focus on software power analysis.

Although system level power management has effectively been investigated in recently

years, there is a realization that software has dramatic impact on power dissipation. Therefore,

in-depth understanding of software power dissipation becomes one of the major consideration

while designing power-aware systems. Ge et al., propose PowerPack [46] to generate compo-

nent level power profiles. This approach targets on the cluster level. PowerPack provides APIs

to synchronize external power measurement and function execution of the target application.

However, manual instrumentation is inconvenient for large scale applications. Hänig et. al,

propose SEEP [58], which uses symbolic execution to explore possible code paths and entities

in a program and to generate energy profiles for a specific target platform. Instruction level

energy profile is needed for each platform in advance in order to generate energy profiles for a

program.

Moreover, as the energy consumption and power dissipation of a computer system stem

from the interplay of hardware and software, they must be considered equally important. Bhat-

tacharya et al. propose an analytical model to estimate energy cost of software bloat on a

specific platform [13]. The results show that reducing software bloat can achieve as much as

40% energy saving. However, the study shows both hardware and software need to be consid-

ered to improve energy efficiency.

5.6 Summary
In this chapter, we achieved our third objective. Basically, based on the previous chapter,

we propose a function level power profiling tool, Safari. It can be used to associate run-time

resources usage with the execution of application functions. The experiment results show

that Safari is able to produce function level profiling with limited overhead (on average 16%
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overhead if maximum one sample is collected for each function). It can be used to connect

application activities to hardware for energy-efficient design, such as application aware power

management and fine-grained scheduling.

So far, we mainly discussed about power profiling techniques with models and tools de-

veloped. All efforts are for one goal: to reduce the energy consumption. Starting from next

chapter, we recheck the energy-efficiency for a system during the execution in a system. Specif-

ically, using the proposed analyzing tools, we examine the factors that impact the system energy

efficiency during the execution of a workload.
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CHAPTER 6

CPT MODEL

In the previous chapters, we present the analysis and tools to analyze system dynamic power

dissipation triggered by active workload. In order to use the exposed workload information to

help system achieve energy efficiency, in this chapter, we take the initial step and define a

general energy-efficiency model, the CPT model, for multi-core computer systems.

Before any optimization is in process, we observed that it is necessary to obtain a general

metric that represents the energy efficiency of a computer system, for a specific configuration,

given a certain amount of workload. CPT is a unified model that helps to decide the near-

optimal configuration of a system in terms of energy efficiency to execute a given workload. In

addition, we expect the model can be utilized to analyze possible knobs that are used to improve

energy efficiency. Three case studies are employed to illustrate the usage of the proposed CPT

model.

6.1 Introduction
The conventional computing area is dominated by the pursuit of performance. The com-

munity has not realized the importance of energy efficiency until recently [18]. As a result,

energy-efficient techniques have been used across different layers in almost every single sys-

tem, ranging from a single chip to a large data center. These techniques include low-power cir-

cuit designs, tunable device states (Dynamic Voltage and Frequency Scaling), dynamic power

management from operating systems, and energy-efficient software. Although current com-

puter systems already achieve much higher efficiency ratings compared with that of previous

generations, there is still potential headroom for improvement.

With the development in energy-efficient computing, one of the fundamental questions is

how to define a model to represent energy efficiency. An appropriate energy-efficiency metric
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not only can be used to evaluate and analyze existing techniques, but also helps to explore new

techniques in this field. However, defining a energy-efficiency model is challenging. For one

thing, the model should be sufficiently general in describing various techniques. Commonly

used knobs such as multi-threading and DVFS have to be meaningful according to the model.

Optimizations from different layers have to be expressed at some level from the model as well.

For instance, the model is better to convey the idea of both clocking gating [142] and workload

consolidation [133].

Moreover, energy efficiency has to be associated with workload characteristics. For exam-

ple, requests per second or transactions per day is the metric that typically is used to measure

the throughput of web service applications, while million instructions per second (MIPS) is

one of the most interested performance indicators in scientific computing field.

In this chapter, we propose a general energy-efficiency model, CPT, which enables effi-

ciency analysis of a system, given a running workload. The rest of the chapter is organized as

follows: we start the chapter by presenting the CPT model and analyze each component in the

model in Section 6.2, followed by case studies in Section 6.3. Related work is discussed in

Section 6.4. Finally, we summarize the chapter in Section 6.5.

6.2 The CPT Model
In the CPT model, given a fixed amount of workload, we ask the question how much energy

is consumed in order to complete the task. Specifically, the model is represented as follows

E =Workload/Energy =
W

(PAI +C×Pt)T

=
W

PAI ×T +C×Pt ×T

(6.1)

where E stands for energy efficiency. W represents the total workload size that is assigned to

a system. PAI and Pt denote active idle power of the system and average power dissipation of

each thread, respectively. Specifically, PAI is the power dissipation while a system is idle in C0
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with the corresponding P0 state specified in ACPI standard [2]. C indicates the concurrency

level of the workload. Intuitively, the more concurrency threads that are used, the quicker a job

can be completed. System power dissipation, however, rises with more system resources being

used. The last factor, T , is the total time taken to complete the workload. The name of CPT

was conceived using the three most important parameters, concurrency, power and executive

time.

In order to improve the overall E , each part in Equation 6.1 should be considered. In

reality, changing each item usually subsequently alters other factors in Equation 6.1. For ex-

ample, improving performance reduces T ; however, in order to improve performance, usually,

active power increases. To be clear, we argue that it is more important to compare the energy

efficiency of the same workload using different designs and/or implementations.

6.2.1 Workload (W)

Given the other factors fixed, in order to improve E , intuitively, we can assign more work-

load to a system as much as possible. These scenarios can be found in data centers, where

facility power dissipation is limited. At this level, the concurrency can be roughly estimated as

how many nodes have been deployed in a data center. Hence, it is better to operate a facility to

its upper capacity limit so that energy efficiency can be maximally guaranteed.

Fan et al. propose several ideas to improve E in [40]. Through in-depth analysis, the

authors discuss possible capacity that can be safely incorporated into different layers, which

include racks, PDUs, and clusters. Although in this process, there are more nodes added into

the system, Pt can be reduced via DVFS and idle state so that the denominator in Equation 6.1

remains within the total power limit of the facility. The basic idea of techniques in this category

is to accomplish more jobs while keeping the product of C and Pt unchanged.

6.2.2 Concurrency (C)

As multi-core platforms become common on servers and even smart phones, implementing

concurrency applications generally will help to improve performance. By assigning each piece
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of a job to different cores, system resources can be efficiently utilized. Most likely, if a job

can be finished earlier, its E can be improved as well because T is reduced. However, it is

not always the case. The well-known concurrency hazards are a collection of problems that

could possibly occur if concurrency is not implemented properly. The hazards include false

sharing, memory contention, incorrect granularity, and so on. On the one hand, the execution

time, T , could be increasing. On the other hand, the total Pt might rise which in turn sabotages

E . False sharing is a typical problem that can be found in multi-threading applications with

shared memory. In the case of false sharing, a certain amount of cache lines are being swapped

in and out from a cache frequently, which invokes additional power dissipation and extends the

execution time. In this case, Pt and T are both affected.

Speedup models are supposed to estimate the benefits in terms of execution time by using

more threads to work on a job [46]. Normally, allocating more cores to a job has dramatic ben-

efit on execution time if it is used properly. For example, embarrassingly parallel applications

benefit the most from multi-core architecture theoretically because there is no dependency be-

tween paralleled tasks. A typical example is that a GPU has a much larger number of cores

(from 500 - 900) compared to that of a general purpose CPU. However, most other parallel

applications do not hold the assumption that there is no dependency between tasks. Communi-

cation between tasks becomes the primary concern when the number of cores increases. Con-

sequently, the bottleneck of finishing a job shifts from computation needs to communication

demands. The speedup effect diminishes while the concurrency level still ascends, eventually

decreasing E [46].

The concurrency level, C, influences the overall E in various ways. Its effect is a complex

combination of system architecture and workload characteristics. Optimal concurrency level

from a performance perspective does not necessarily indicate the maximum E . Selecting an

appropriate C becomes a more complicated problem in power-aware computing setting (DVFS-

enabled).
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6.2.3 Active idle power (PAI)

The active idle state is the normal operating state of a system when it is idle, or according

to ACPI standard, the C0 idle state. No wake up is required before a system executes jobs. In

active idle state, power has been utilized to maintain the operation state of a system.

Most techniques used to improve E by reducing PAI are at circuit level. The idea is to

reduce leakage power. Usually low power design devices can be used to achieve this goal.

As the density of transistors on a die increases tremendously, the static power dissipation of a

processor occupies a large portion of the total power. The reason is because leakage power rises

as more transistors are put on a chip. Low power devices usually sacrifice some performance

to achieve less power dissipation.

One well-known strategy, “race to idle” [128], states that a system should finish its job as

quickly as possible and rush to an idle state. This is partially because E can be improved by

reducing T . In addition, a system could enter deeper C states.

One of the most beneficial results that comes from reducing active idle power is that it

almost has no effects to other components in Equation 6.1. Therefore, it can be safely used

together with other proposed techniques targeting other components. Moreover, PAI does not

depend on a particular architecture or workload type.

6.2.4 Power dissipation per thread (Pt)

Power dissipation per thread represents the dynamic power dissipation in some sense. De-

cided by how efficiently system resources are being used, dynamic power dissipation associates

with run-time system management, system architecture, workload characteristics, and so on.

Consequently, various factors affect power dissipation per thread. For instance, database ap-

plications exhibiting high memory and I/O utilization have distinct features from computation

intensive applications in terms of dynamic power. Another example is low-power electronic

devices execute specific types of tasks more efficiently compared to their counterparts. Mea-

suring per thread power on a multi-core processor is challenging; therefore, power models are
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used instead of hardware measuring. We developed SPAN [137] to model power dissipation at

per function per thread level.

Clock gating is one of the most widely used techniques [142]. By disabling part of the

circuits so that they do not have to switch states, clock gating saves dynamic power. Workload

characteristics mainly determine the effects of clock-gating. General purpose processors, al-

though have more computation power, usually cannot satisfy low power features. Application-

specific integrated circuit (ASIC) is much more energy efficient, for certain types of tasks [54].

For example, most of the latest smart phone platforms have GPU units, which perform graphic

jobs more efficiently. In this sense, it reduces Pt required to finish certain tasks.

Another principle to reduce dynamic power is to put devices or components into lower

power modes if they are not in use. DVFS allows run-time adjustment of power dissipation of a

CPU. According to the equation P =CV 2F , reducing voltage and frequency has a cubic effect

on power dissipation. However, one of the disadvantages of using DVFS is that it extends

execution time T . In this sense, the overall effects of DVFS on E is uncertain. Normally,

because of the existence of static power, extending workload execution time reduces E even

though the average power decreases. The key point is to apply DVFS on applications properly.

Isci et al. propose a run-time prediction model to identify program phases that are less CPU-

bounded [66]. Afterwards, DVFS can be applied to these phases with limited performance

loss. Hence, the extended T value can be controlled during this process. The same idea can be

applied to similar scenarios. For example, as far as I/O bounded applications are concerned,

DVFS effectively improves E . If CPU-bounded applications are the major targets, I/O devices

can be safely put into deeper D states.

Other than frequency, workload characteristics also contribute to the per thread power to

a certain extend. Activities on different components of a system determine the total amount

of power dissipation at that moment. For example, IPC values are highly related to CPU

power [137]. Some applications suffer from high last level cache (LLC) misses, which leads
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Figure 6.1: Execution time, average power dissipation per thread, and total energy consumption

of NPB and PARSEC benchmark; The X-axis represents total number of threads (C); (from

bottom up)The first Y-axis depicts energy consumption in Joules; The second Y-axis is for

average total power dissipation per thread (Pt); The third Y-axis shows total execution time

(T ); PAI stays around 137W. CPU frequency is set to 2.4GHz.

to high memory power dissipation and low E . Either by altering the implementations or algo-

rithms, Pt can be controlled. However, optimization techniques used at this level sometimes

fall into the same category of performance optimization.

6.3 Case Study
In this section, we use three case studies to illustrate the usefulness and effectiveness of

CPT: 1) the effect of concurrency (C); 2) the impact of thread mapping; and 3) the influence of

DVFS.

Experiment setup We conduct the experiments on an Intel Xeon E5620 server. The specifi-

cations are listed in Table 6.1. There is a total of eight frequencies available, with the maximum

of 2400MHz and minimum of 1600MHz. We use the NPB benchmark suite with OMP imple-

mentation and PARSEC benchmark to demonstrate the idea of CPT. In order to measure the

energy consumption of the workload on the system, we connect a power measurement device,

Watt’s Up Pro [95], between the power outlet and the server. Watt’s Up Pro is able to record

power dissipation of the entire system at a frequency of 1Hz. It is connected to the system with
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Figure 6.2: Execution time, average power dissipation per thread, and total energy consumption

of 8 thread version of NPB-OMP benchmark; The X-axis represents different thread mapping

strategy; (from bottom up)The first Y-axis depicts energy consumption in Joules; The second Y-

axis is for average total power dissipation per thread (Pt); The third Y-axis shows total execution

time (T ); PAI is relative stable.

System component Configuration
CPU Intel Xeon E5620

Microarchitecture Nehalem

Processor core Westmere-EP

L1 cache
4 × 32KB I cache

4 × 32KB D cache

L2 cache 4 × 256KB

L3 cache 12MB

Frequency 2400MHz

Number of sockets 2

Num of cores per chip 4

Num of threads per chip 8

Total num of threads 16

Kernel version Linux 2.6.31

Table 6.1: System specification.

a serial port. Watt’s Up averages power measurement within one second intervals, so that it is

safe to use power readings and execution time to calculate total energy consumption.

Case Study 1: Concurrency: We show the effects of concurrency on other factors and E .

Firgure 6.1 demonstrates the effects of concurrency on the average power dissipation, work-

load execution time, and total energy consumption. As discussed, increasing concurrency level

properly can reduce execution time. The specific speedup factor varies among different work-

loads. EP, IS, LU, and UA benchmarks are shown to be most affected by the concurrency

level. However, most of them suffer from the diminishing of speedup. Most benchmarks in

this category show less speedup if the number of threads utilized is equal or greater than four.
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Figure 6.3: Execution time, average power dissipation per thread, and total energy consumption

of 8 thread version of NPB-OMP benchmark; The X-axis represents different CPU frequencies;

(from bottom up)The first Y-axis depicts energy consumption in Joules; The second Y-axis is

for average total power dissipation per thread (Pt); The third Y-axis shows total execution time

(T ); PAI is relative stable and stays around 137W for all the cases. Scatter is used as the thread

mapping scheme.

Although FT, VIPS, and SP benchmarks benefit from concurrency, execution time is no longer

monotonically related to the number of threads. The execution time increases if all 16 logi-

cal cores are employed. For the Raytrace from PARSEC, it reaches optimal energy efficiency

when only four cores are used. This is a typical case to consider because using more threads

does not improve energy efficiency for Raytrace. It is because resource contention and serial

portion of the workload become dominant factors rather than computation needs.

Average power dissipation per thread, Pt , decreases generally if more cores are involved

in the computation. The exceptions are EP, FT, and IS benchmarks when two cores are de-

ployed. The reason is probably because more function units on the chip are operational if two

cores are used. As a result, techniques such as clock gating is no longer in use. It is worth

noticing that the total average power dissipation, which is the sum of PAI and C×Pt , increases

monotonically as more cores are used even though the value of Pt drops in most cases. The

extra energy consumption due the difference in power dissipation does not sabotage the overall

energy efficiency because of the speedup. However, as speedup diminishes, this part of energy

consumption affects the overall energy efficiency.
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In this set of experiments, the optimal configuration that minimizes execution time matches

the configuration generates most energy efficiency. The reason is because PAI occupies a great

portion in the total power dissipation even if all 16 logical cores are deployed; as a result,

PAI ×T contributes a large portion to the total energy consumption. Because of the existence

of a large amount of static power due to the smaller transistor size, “race to idle” plays a vital

role to achieve the most efficiency configuration. In addition, it is worth noting that increas-

ing concurrency level always generates positive speedup results in the tested benchmarks if

no simultaneous multi-threading (SMT) is considered, which indicates the improved balance

between multi-core CPU and memory subsystem in terms of speed. The improved memory

performance mainly can be attributed to NUMA architecture. Moreover, although SMT can be

effective in most of cases, its usage depends on data demands of the workload.

Case Study 2: Thread Mapping: Maintaining a constant CPU frequency and workload

concurrency level, the organization of threads on a system also affects total energy efficiency.

This technique is known as thread mapping. Compact thread mapping means that the threads

are allocated to as less processors as possible. This approach reduces data access latency since

sibling threads are sharing the same off-chip cache. Scatter scheme assigns thread evenly to

each processor, which reduces off-chip resource contention, such as LLC. Figure 6.2 shows the

effects of thread mapping on energy consumption when eight threads are used. All benchmarks

exhibit similar behavior. A system consumes less power by using only one processor. However,

execution time is reduced considerably if two processors are deployed together. On average,

there is 33% execution time reduction. The combined result is that a total of 22% energy saving

can be achieved if scatter thread mapping is used. Speedup probably comes from fully utilized

off-chip resources from two sockets. The results do not necessarily show that a scatter mapping

scheme outperforms a compact mapping scheme in terms of energy efficiency in all cases. For

example, if only four threads are deployed, sometimes a compact mapping scheme consumes

less energy. As Figure 6.4 shows, a compact thread mapping scheme achieves better energy
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efficiency for BT benchmark (SMT is not used). The major advantage of using a scatter policy

is that an additional LLC can be involved in the computing. In other words, compact policy

can be efficient if the working set size is small enough, in which case, the compact policy will

consume less power (Pt) with a limited amount of performance loss (T ) or even performance

gain. Because of this characteristics, compact policies can be used for power capping as well.

We discuss it in more details in the next case study.

Figure 6.4: Execution time, average power dissipation per thread, and total energy consumption

of 4 thread version BT benchmark with different thread mapping strategies; PAI is relative stable

and stays around 137W for all the cases. CPU frequency is set to be 2.4GHz.

Case Study 3: DVFS As we discussed in Section 6.2.2, DVFS is an effective way to

reduce Pt . However, execution time increases because of the compromised computation capa-

bility. Figure 6.3 shows the effects of tuning the CPU frequencies for different benchmarks. It

is obvious that the most energy efficient frequency is depend on the particular workload. For

example, at 2.00 GHz, BT, LU, and UA benchmark achieve most energy efficiency among all

the different frequencies. While, for SP and CG, it is 1.73GHz. In addition, a finer tuning

can be made for each benchmark to achieve better energy efficiency. We pick IS benchmark

as an example to show the effects. We use Intel Core 2 Quad 8200 as a experiment platform

in this study to measurement CPU power dissipation directly from the power supply. We use
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SPAN [137] to record different functions activities in IS benchmark. There are three major

steps in IS.A: create seq(), rank(), and full verify(). In this example, the rank()

function, which produces approximate 0.15 Instructions Per Cycle (IPC), is less CPU-bound

during its execution (IPC values are broadly used as CPU power model input [137]). For ex-

ample, we are able to use DVFS to scale down CPU frequency from 2.34GHz to 2.00GHz

during the execution of rank(). As Figure 6.5 shows, we achieved 24% energy saving with

3% performance loss. On the contrary, 10% energy saving is achieved with 10% performance

loss if we scale down CPU frequency during the execution of create seq(), which has higher

IPC values during its execution (around 0.6). In addition, we observe that multiplication opera-

tions are intensively used in the source code of create seq(), while rank() function mainly

contains branch-prediction and data movement operations. Hence, tuning Pt using DVFS will

effect both execution time and power dissipation. In order to improve E , such a technique

needs to be carefully applied.

Figure 6.5: Power dissipation of IS on a Intel Core2 Quad 8200 processor with different DVFS

setting.

Given a cap power value [83], using thread mapping and/or DVFS can control the power

dissipation of a system. The CPT model also can be used to demonstrate this situation. Since

PAI +C×Pt is fixed (due to the cap), the system configuration that generates highest perfor-

mance provides maximum energy efficiency. The specific configuration, however, depends on

the workload and the system. Figure 6.6 illustrates this scenario. Although either applying

the compact mapping or a slower CPU speed reduces power dissipation, the performance loss
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Figure 6.6: Power dissipation and execution time using different power capping techniques.

introduced by DVFS is less for SP benchmark; while it is the opposite situation for EP bench-

mark. The advantage of using compact threading mapping includes allocating the data to a

relative closer cache, other than the remote cache. A recent study [118] shows that memory

performance can be affected by DVFS, which should be analyzed based on various computer

systems. In other words, either using a different thread mapping strategy or DVFS, the off-

chip data access can be affected. However, compact thread mapping produces a more energy

efficient result if the workload phases tend to be computation intensive. EP benchmark can

be considered as an extreme case. Although the DVFS strategy reduces off-chip data access

bandwidth as well, it utilizes all the LLC from both processors, which results in a higher per-

formance gain for a certain set of benchmarks.
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6.4 Related work
In the data centers, regarding the effectiveness of the power usage, Green Grid first offi-

cially introduces the equation:

PUE = Total Facility Power/IT Equipment Power [111]. The formula is widely used to eval-

uate the efficiency of a whole data center design. The proposed CPT model is complementary

with PUE in the sense that CPT emphasizes useful work produced by a system.

In-depth understanding of software power dissipation becomes one of the major consider-

ations when designing power-aware systems. Ge et al., propose PowerPack [46] to generate

component level power profiles. This approach targets on cluster level. PowerPack provides

APIs to synchronize external power measurement and function execution of the target applica-

tion. However, manual instrumentation is inconvenient for large scale applications. Hänig et.

al, propose SEEP [58], which uses symbolic execution to explore possible code paths and enti-

ties in a program and to generate energy profiles for specific target platforms. Instruction level

energy profiles are needed for each platform in advance in order to generate energy profiles for

a program.

6.5 Summary
In this chapter, we propose a general CPT model to analyze the system energy efficiency

for a given workload. Most techniques on the market can be categorized as altering parame-

ters in the proposed model. We show three case studies to illustrate how to use CPT model to

analyze different techniques. In practice, each technique proposed can be examined from the

aspects mentioned in Section 6.2. Energy efficiency is closely related to the system architec-

ture, workload characteristics, and system configurations. We expect the CPT model helps to

identify the bottleneck of existing systems and serves as guidance for future energy-efficient

system designs.

Based on the power model proposed in the previous chapters, each item in CPT model is

measurable without hardware instrumentation. While CPT model only describes the factors
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that affect energy efficiency, in the next chapter, we closely estimate and optimize each one of

them in a production system in order to achieve better energy efficiency for a given workload.
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CHAPTER 7

ENERGY-EFFICIENT SYSTEM CONFIGURATION

PREDICTION

Based on the proposed CPT model in the last chapter, we analyze various parallel workload.

Our goal in this chapter is to achieve the energy efficiency of the whole system while executing

such workload. While most existing works concentrate on either static analysis of the workload

or run-time predication results, in this chapter, we present a hybrid two-step method that uti-

lizes concurrency levels and DVFS settings to achieve the energy efficiency configuration for

a workload. Particularly, we employ the profiling tools that is proposed in the previous chapter

to estimate the power dissipation. Specifically, we present models to estimate the speedup and

power dissipation of a parallel program for different system configurations, such as the num-

ber of cores and the thread mapping strategy. The second step involves using DVFS to adjust

voltage/frequency at run-time when applying the configuration obtained from the first step to

further reduce energy consumption.

7.1 Introduction
Modern computer systems are designed to balance performance and energy consumption,

especially in HPC systems. Several run-time factors, such as concurrency levels, thread map-

ping strategies, and dynamic voltage and frequency scaling (DVFS) should be considered in

order to achieve optimal energy efficiency for a workload. Selecting appropriate run-time fac-

tors, however, is one of the most challenging tasks because the run-time factors are architecture-

specific and workload-specific.

The focus of computing has shifted from performance-centered to energy efficiency. As

a result, energy-efficient techniques have been adopted across different layers in almost ev-

ery system, from single chips to large data centers [94, 120]. Power dissipation and energy
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consumption are priority concerns when designing computer systems, especially in the High

Performance Computing (HPC) field. A recent article suggests that the benefits of the multi-

core architecture diminishes as the power constraint on a chip rises [38].

Generally, there are two major factors that affect energy consumption for a specific work-

load: execution time and average power dissipation. Speedup models are used to describe the

benefits introduced by parallel implementations in terms of execution time, while power mod-

els are used to estimate power dissipation of a workload. Energy efficiency can be defined as

the workload over the required energy, which in turn is equal to W
(PAI+∑C

i Pt)T
[138], where C is

concurrency level, PAI and Pt denote active idle power of a system and average power dissipa-

tion of each thread, respectively, and T is execution time. A concurrency level with a thread

mapping strategy is referred to a configuration in the rest of the chapter.

In-depth analysis of these three factors, C, P, and T , is necessary to achieve better energy

efficiency. For example, a speedup model is usually used to quantify the benefits introduced

by parallel computing in terms of execution time [78]. Higher concurrency levels, however,

affect power dissipation (P) because not only additional computing units are activated but also

the power dissipation of common components on a chip will be shared by more cores. An

analytical model is needed to understand the energy efficiency of a workload in a multi-core

computing scenario. While allocating a workload to multiple CPUs is an effective way to

reduce computation energy consumption, DVFS is usually used to explore slacks during exe-

cution to save extra power dissipation [62].

Workload characteristics and micro-architectures have major influence on the three fac-

tors. The speedup factor of a workload is closely related to the serial portion of different pro-

grams [44, 21]. In addition, memory boundedness affects the scalability of a workload in the

sense that an individual thread or a process competes for off-chip resources with other threads

so that concurrency hazards, such as false sharing, might occur [36]. That information cannot

be exposed without run-time profiling. On the other side of the spectrum, modern computer
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systems deploy different mechanisms to improve memory performance. For example, Intel

processors use Quickpath technology [151] as an implementation of Non-Uniform Memory

Access (NUMA) architecture.

An empirical model is used to predict the configuration, and voltage/frequency levels of

a workload [30, 98] by using Performance Monitoring Counters (PMCs). However, one of

the major drawbacks of using an empirical model is architecture dependency, which requires

different sets of PMCs to be used for different architectures. Ge et al. propose an energy-

performance estimation using an analytical model [45]. However, the model mainly analyzes

the behavior of a multi-core based power aware system by case studies. No prediction is used

to select the appropriate configuration for each workload.

In this chapter, we propose an approach to predict the appropriate configuration of a work-

load for energy efficiency purposes. First, we propose an analytical speedup model that utilizes

PMCs to predict potential speedup of various configurations from two threads execution infor-

mation. The collected information is used to build the power estimation of various concurrency

levels. Once the optimal concurrency level is selected, we apply a run-time DVFS to select an

appropriate frequency for each phase. Our contribution of this chapter includes the following

items.

• We generalize the relationship between C, P, and T using mathematical models.

• We propose a model to capture the relationship between C, P, and T in detail. Execution

information using two threads is used to predict the energy consumption of different

configurations on a specific architecture. A DVFS scheme is selected during the run-

time given the predicted concurrency level and thread mapping setting.

• We apply an analytical speedup model to predict the optimal/near-optimal configuration

of a parallel workload using architecture details and PMCs information. By using an

analytical model, unlike an empirical model, we reserve the applicability of the model
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on different architectures.

The rest of the chapter is organized as follows: we start the chapter by introducing our

observation between workload concurrency level and execution time/power in Section 7.2;

then, we present a two-step prediction model in Section 7.3, followed by evaluation of the

prediction model on a Intel Xeon E5620 platform in Section 7.4. Related work is discussed in

Section 7.5. Finally, we summarize the chapter in Section 7.6.

7.2 Observation
In a multi-core or many-core system, the scalability and power dissipation of a workload are

closely related to the system architecture and workload characteristics. Considering speedup

factors, the execution time is infinity if no computation unit is involved. As the core number and

thread number increase, execution time drops since more computation power is involved. The

lower bound of the execution time, however, is limited by two factors, namely the serial portion

of the workload and the off-chip resources. As a result, the execution time of a workload

approaches its lower bound and even slowly rises as a system allocating more cores to the

workload. On the other hand, a system power dissipation increases as the workload occupies

more cores. The system consumes idle power if no computation power is invoked. Although

the system power dissipation increases, it is bounded by the Thermal Design Power (TDP). As

a result, the speedup bound and power bound can be modeled using mathematical equations.

Specifically, we model the speedup and power dissipation as a function of the number of

threads utilized as Equation 7.1 and 7.2, respectively. In particularly, we derive Equation 7.2

from the Logistic Function, which has a maximum value β1 and exponential growth. This

scenario corresponds to the fact that the system power is bounded by the design.
β1

1+expβ2

represents the system idle power when there is no cores engaged for the workload.

T = f (C) = α1 +α2 ×Cα3 +α4 ×C−α3(α3 > 0) (7.1)
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P = g(C) =
β1

1+ expβ2−β3×C
(7.2)

Figure 7.1 shows the model fitting results for NPB and PARSEC benchmarks. The solid

line represents the proposed model while the dots are actual measurements. It is easy to observe

that all the benchmarks present a similar pattern, which can be captured by the mathematical

models. As the number of threads increases, the workload speedup is limited by the off-chip

resources such as cache and memory. On the other hand, the power dissipation, starting from

idle power when no thread is running, grows to meet the maximum bound. The mathematical

models carefully capture the features of concurrency level and its relationship to the power and

speedup. Particularly, the execution time and power dissipation of raytrace benchmark fall into

a small range because of the large serial portion of the benchmark. Our model is able to capture

this unusual case as well.

We derive models to estimate speedup and power dissipation under various configurations

for a workload in order to achieve the best energy efficiency and energy delay product.

7.3 Model Derivation
In the first step, we focus on concurrency levels (C), power dissipation of the selected

concurrency level (P), and execution time (T ). By increasing the concurrency level of an ap-

plication, the average power dissipation increases while the execution time required to finish

the same work shrinks. Usually the speedup benefited from a higher concurrency is substantial

so that the total energy consumption drops. However, a large number of threads in a sys-

tem usually results in a competing situation, especially regarding front bus usage. Although

NUMA [22] is proposed to solve this problem, off-chip activities affect speedup dramatically.

Thread mapping is another technique that is proposed to reduce contention. However, the

effects of thread mapping on energy efficiency are uncertain [57, 24]. Although a compact

scheme (allocating threads to as less physical processor as possible) generates less power dis-
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Figure 7.1: The model fitting of speedup and power dissipation of the workload as a function

of concurrency level. The benchmarks are BT, FT, CG, LU, blackscholes, ferret, streamcluster,

and raytrace, respectively.

sipation, this scheme tends to reduce speedup. Scatter scheme (allocating threads evenly to

different physical processors), on the other hand, generates higher power dissipation but alle-

viates contention.

7.3.1 Analytical Speedup Model

In this section, we derive a speedup model for different configurations. The input for the

model is collected from the parallel execution with two threads. The output of the model is the

speedup factor when applying different thread mapping strategies and concurrency levels. The

maximum CPU frequency is always applied in this section. We discuss the model based on the

following assumptions and considerations:

• We assume the workload is allocated to a dedicated node and the workload executed
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directly on the node without virtual machines.

• We measure the workload using two threads and executed on two processors. The col-

lected data are the model inputs.

• We apply a simplified memory model that only uses Last Level Cache (LLC) references

and misses to quantify the off-chip data accesses.

We assume each workload W is composed of two major parts. One is serial portion, W serial ,

and the other is parallel portion, W parallel .

W =W serial +W parallel (7.3)

3.11 Serial Portion

Serial portion of the workload comprises synchronization cost and workload allocation

steps; while the former occupies the major portion of a whole W serial . Briefly, synchronization

costs include locks [43], barriers, and condition variables. Currently, there is no effective

prediction method, as far as we know, to estimate the exact amount of the serial portion of a

workload without profiling it in a real world machine. For example, in a recent study [69],

Joao et al. designed a new instruction that tracks the amount of cycles elapsed while executing

MWAIT instruction in order to identify the serial portion of a parallel program.

Our goal is to predict the synchronization cost of a workload for different system con-

figurations given the information of executing the workload using two threads. Figure 7.2

shows different synchronization strategies that can be deployed in a parallel program. Nor-

mally threads need to pause and wait for resources or conditions in those synchronization

phases. Specifically, threads monitor the data located in some memory addresses to detect any

changes. During a monitoring period, a CPU core usually enters the idle state. In order to

predict the synchronization cost, our idea is intuitive. The time duration that each thread waits
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Figure 7.2: Synchronization

for each other in the two threads execution could be similar to the amount of time each thread

waits for others if n threads are used. For example, data in a critical section protected by locks

needs to be processed during the execution. It is the same amount of time that is required to

process the data no matter how many threads are utilized because of mutual exclusion. We

list the average idle time for each thread using different number of threads of two PARSEC

benchmarks with native input data, where i denotes the number of processors and j denotes the

total number of threads in Table 7.1. blackscholes is mainly synchronized by barriers; while

f reqmine uses locks to protect critical sections [14]. It is easy to observe that the average time

each thread spending in the idle mode is approximately the same for different configurations.

We summarize the relationship in Equation 7.4.

W serial
i, j =W2,2 × (i× j−1) (7.4)

3.12 Parallel Portion
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Benchmark i j Avg. idle time per core (s)

blackholes

1 2 28.83

1 4 29.23

2 2 30.17

2 4 29.28

2 8 28.89

f reqmine

1 2 4.33

1 4 4.41

2 2 4.31

2 4 4.18

2 8 5.30

Table 7.1: Average idle time for each core using different configurations.

The total amount of workload can be expressed in several ways based on each stage in

a pipeline, for instance, W parallel = total issue cycles+ total issue stall cycle or W parallel =

total active execute cycles+ total execute stall cycle. At the issue stage, stalls mainly stem

from instruction cache misses, resource (such as registers) unavailability and other activities,

which result in no instruction being allocated to the Reservation Station (RS). These activities

do not exhibit a strong relationship to the selected concurrency level. While total execute stall

measures the delay that is taken to prepare the data for instruction execution.

Part of W parallel is independent of the concurrency level and the thread mapping strategy.

Computation load belongs to this part. We denote this part as C. Another part changes signif-

icantly mainly because of memory subsystems, which is denoted as M. The unit used in the

model is cycles.

W parallel =C+M (7.5)

The computation load, C, once a different concurrency level and thread mapping strategy

are applied, can be evenly distributed to the newly assigned threads. The total workload be-

comes W parallel
i, j and the computation load becomes Ci, j. The execution time of Ci, j part can be

reduced to
2×C2,2

j for each thread. Basically, we use C2,2 to estimate the portion of the workload
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Benchmark i j Eexcuted Cycles

bt.A

1 1 205174317772

1 2 205842270932

1 4 210569866603

2 2 208036560725

2 4 210757446738

2 8 214207223107

f t.B

1 1 168308642166

1 2 169576463590

1 4 174047613387

2 2 173953520506

2 4 175101409435

2 8 185063427379

Table 7.2: Ci, j of bt.A and ft.B benchmark.

that has been sent to different executing ports on processor units1 under the circumstance that

all the operands of each instruction are ready for execution. C2,2 counts the total time spent on

these executions. It is worth noticing that thread mapping strategies and different concurrency

levels do not affect the computation workload in the analytical model.

We measure bt and f t from NPB benchmark suite to verify the idea. We sample PMC

UPOS EXECUT ED ACT IV E CYCYCLES (E Cycles for short), whose event number and

umask is 0xB1 and 0x3F respectively, using different configurations. The results are shown in

Table 7.2. It is clear that the even though the concurrency level and thread mapping strategy

changes, the E Cycles only varies at most 4% and 9% for bt.A and ft.B, respectively.

Changing configurations affects Mi, j. Mi, j part can be interpreted as the total time used

for preparing execution on each unit. Different configurations introduce varying amount of

Mi, j. Even though Mi, j is shared by j threads, the total amount of Mi, j is related to the specific

architecture and is the one that needs to be predicted for each pair of i and j. Table 7.3 illustrates

the Mi, j part of bt.A and ft.B benchmarks, which is referred as Stall Cycles. It is calculated by

subtracting the Execute Cycles from the total number of cycles required to finish the workload.

1For example, there are 6 different ports on Intel Microarchitecture Code Name Westmere, where port 0,1, and

5 handle integer arithmetic, SIMD, integer shift, FP multiply and FP divide Uops and Port 2, 3, and 4 handle the

load and store Uops[63].
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Benchmark i j Stall Cycles

bt.A

1 1 24536512493

1 2 27213960868

1 4 39855366148

2 2 21026377128

2 4 33466947535

2 8 55621254767

ft.B

1 1 18113150861

1 2 31063082823

1 4 81392657035

2 2 23548254140

2 4 42809740979

2 8 110260939317

Table 7.3: Mi, j of bt.A and ft.B benchmark.

As much as 600% difference can be observed for the benchmark if a different configuration is

applied.

The goal of the prediction model lies on predicting the Mi, j for a given M2,2. One of the

most significant resources stalls is off-chip cache accesses. In a NUMA architecture, a 40

cycles to at most 300 cycles penalty can be triggered in order to access an off-chip L3 cache,

while accessing memory triggers 60 ns to 100 ns delay [31]. Although the exact number may

vary, off-chip data accesses become one of the major root causes of execution stalls. As a

result, in order to predict Mi, j, we record LLC reference and LLC miss rates as the input of the

model. The unit of them is counts per sec, which shows the approximate demand of LLC and

memory accesses during a fixed interval. The prediction is shown in Equation 7.6, where we

denote LLC references and misses as LLC R and LLC M respectively. Stall Cycles is referred

as Stall for short.

Mi, j =αi, j ×LLC R2,2 +βi, j ×LLC M2,2

+Stall2,2 × γi, j + εi, j

(7.6)



www.manaraa.com

122

In Equation 7.5, the percentage of C2,2 and M2,2 is pre-determined by the workload while

in Equation 7.6, the prediction result of Mi, j is determined by both the system architecture and

the workload itself. Combine Equation 7.5 and 7.6, we obtain Equation 7.7.

Wi, j =Ci, j +Mi, j

=
C2,2

i
+

αi, j ×LLC R2,2

i

+
βi, j ×LLC M2,2 +Stall2,2 × γi, j + εi, j

i

(7.7)

In order to obtain αi, j and βi, j, γi, j, and εi, j, a set of training benchmarks can be used. These

parameters are determined by the system architecture, which can be characterized by a set of

carefully designed training benchmarks. We modified the memory mountain benchmark [19]

by adjusting stride and working set sizes. By changing the stride, we are able to obtain different

LLC R and LLC M values. Then, we run the modified memory mountain benchmark using

different number of threads and thread mapping strategies. PMCs information is collected

during each execution. In addition, system power dissipation information is recorded. A Linear

Regression model is used to train the model parameters.

We observed that there are two categories to consider based on the training results. The first

category exhibits less data demand that the contention on LLC and memory is limited. The

other category shows strong contention by increasing the concurrency level. Two groups are

separated by using a pre-defined threshold value of LLC R. The rationale behind this scenario is

that before the throughput reaches the limit of LLC and memory bandwidths, the relationship

between LLC R, LLC M and Mi, j exhibits differently before and after they reach the limits.

We utilize the Minimum Absolute Error to determine the threshold in the training set. Four

parameters are obtained for each configuration. We set the threshold, δ , based on LLC R on the

target platform to distinguish each category. The threshold, δ , is set to 2360000 references/sec.
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7.3.2 Power Model

By changing concurrency level and mapping strategy, system power dissipation changes as

well. In order to achieve a better energy efficiency configuration, a power model describing

power dissipation using different configurations is needed. To be clear, the power dissipation

that is referred to in this subsection is average power dissipation.

In order to predict the power dissipation of each configuration, we extend the methodology

presented in [137]. The previous work predicts the run-time CPU power on multi-core systems

using PMCs as input. However, it requires the run-time data collection. In this case, the model

input is execution information using two threads and the expected output is average power

dissipation of each different configuration.

In the power model, we assume the CPUs do not enter deeper sleep modes but C0. We

denote idle power as Pb and dynamic power as Pd . In this chapter, we only consider the

dynamic power contributed from the CPU and the memory. There are various works that study

about the relationship between CPU power and PMCs [84, 12, 137, 67]. Instruction per Cycle

(IPC) or UOPs per cycle shows a strong linear relationship to CPU power dissipation. We

continue to use this relationship to estimate power dissipation. Instruction Issued is used in

the model instead of Instruction Required because some instructions are issued and executed

but discarded in a pipeline of an OOO execution unit. Regarding off-chip cache and memory

power dissipation, LLC R and LLC M are introduced to estimate the demand of accesses to

LLC cache and memory subsystems. Equation 7.8 shows the overall estimation for dynamic

power.

Pi, j = Pb +Pd

= Pb + IPC2,2 ×ai, j +LLC R2,2 ×bi, j

+LLC M2,2 × ci, j +di, j

(7.8)
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The power dissipation of the configuration using i processors and j threads is determined by

four newly introduced coefficients, ai, j, bi, j, ci, j, and di, j The four parameters are determined

by system architecture and can be trained for each pair of i and j. However, the IPC, LLC R2,2,

and LLC M2,2 are related to the workload characteristics.

In order to obtain ai, j, bi, j, ci, j, and di, j, we modified the Memory Mountain Bench-

mark [19] by adding a computation part after each data item is retrieved. By adjusting the

computation load, the stride, and the working set size in the training benchmark, various com-

bination of IPC, LLC R, and LLC M values can be obtained. For example, setting workload set

size to be limited to fit in L3 cache, configuring the stride value to pass L2 cache, and adding a

computation part to occupy a reasonable portion in the whole workload, we can generate high

IPC and LLC R values while maintaining low LLC M. The training process is similar to the

description of speedup model training. Once ai, j, bi, j, ci, j, and di, j are trained for the target

platform, the power model is able to predict the power dissipation of a different configuration.

The total energy consumption of a workload using various configurations can be calculated

as follows:

Ei, j =
∫

Pi, j dt = Pi, j ×Wi, j (7.9)

7.3.3 Run-time DVFS

In the above sections, we describe a static off-line prediction model that uses workload

information and system architecture parameters to obtain the speedup factor and power dissi-

pation of different configurations. Applying DVFS [73, 7], we can tune the the power dissipa-

tion of CPU at run-time. The CPU frequency is referred as an item in the configuration of a

system [30]. However, the proposed method uses DVFS as a run-time knob to tune the results

generated from the analytical model described in the previous section because of the following

reason: if CPU frequencies are combined with concurrency levels and thread mapping strate-

gies as configurations, the number of configurations needed to be considered in an analytical
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model is huge in a modern multi-core system. For example, on an Intel E5620 platform, there

are eight different concurrency and thread mapping configurations (do not consider Intel Hy-

per Threading technology). If eight different frequency levels are considered, the system will

generate a total of 64 different configuration settings. The calculation overhead is considerable

if we apply it at run-time. Therefore, DVFS is used as the second step to gain further energy

savings.

The rationale of tuning DVFS is reducing power dissipation of a system when the workload

enters memory bounded phases [66, 65]. The primary goal of this step is to reduce run-time

power dissipation at the minimum cost of performance degradation.

The first part of the run-time prediction is to classify each phase of a workload to different

categories. The second part is the prediction algorithm. In our approach, each phase can

be abstracted using a vector of features denoted as V = [v1,v2, ...,vn]. Even for the finest

grained phase detection mechanism, each phase is combined with computation and memory

accesses. Hence, memory boundedness is related to the percentage of computation and data-

accesses in a phase. Moreover, the phase duration usually maintains at the range of 10 ms to

500 ms [31]. In order to approximate the percentage of off-chip data accesses in one phase,

we derive a method similar to the one that is used to predict speedup factors: Stall Cycles

and Execute Cycles. The percentage of Stall Cycles in the total elapsed cycles can represent

the memory boundedness in some sense and is one of the items in the feature vector used to

identify memory-boundedness. However, off-chip memory accesses are not the only source

of Stall Cycles. In order to compensate this phenomenon, we use LLC references and misses

as the second and third item in the feature vector. To summarize, the feature vector contains

Stall Cycles
Total Cycles , LLC R, LLC M. We use normalized values of the three elements.

Once the feature vector is determined, we use the modified Memory Mountain Benchmark

to generate a set of training samples. We record the values of the three items in the feature

vector for each training sample along with the frequency that generates the highest power
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dissipation deduction over IPC deduction ratio. This way, the training benchmarks can be used

to illustrate the maximum power saving with minimum performance degradation. The desired

frequency value and the feature vector are collected. Then, all the training cases are grouped

into different classes according to its optimal frequency value. At run-time, in order to predict

the behavior of phases, we use k-nearest neighbor algorithm (k = 5) to determine the current

phase. Euclidean distance is used to determine the similarity between the current phase and the

stored training phases. In order to predict the next phase, we use a simple last-value prediction

algorithm to reduce the run-time overhead. The algorithm predicts the very next phase will be

the same as the current phase.

7.4 Evaluation

7.4.1 Implementation

The proposed prediction model is implemented with two parts. The first one is the static

prediction model that collects execution information using two threads to predict the desired

concurrency level and thread mapping strategy. The other one is a run-time phase detection

model that dynamically changes CPU frequencies. The parameters in the model are hard

coded in the program. We use the perf tool, which is available from Linux kernel system

call, NR per f event open() to sample PMCs values. Perf tool becomes available from Linux

kernel 2.6.31 [32].

We collect system information for each core, including idle time for each core from PROC

file system. Two Architectural Performance Events are sampled at run-time, which include

LLC references, and LLC misses. One of the advantages of using architectural performance

events is that they behave consistently across different micro-architectures. Two other event

counters in the proposed model, UPOS EXECUT ED ACT IV E CYCYCLES and

UOPS ISSUED.ANY are implemented to be architecture-specific. However, these events are

supported by most of the recent architectures, which makes our model extensible. To set the

configuration after prediction, we utilize omp set num threads() provided by the OpenMp
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library. sched seta f f inity() system call can be used to change different thread mapping strate-

gies given a CPU topology. The second step works as follows: as a workload starts execution,

we sample the PMCs at intervals of 500 ms. The collected values are used to predict the next

phase of the execution and set the corresponding CPU frequency. The cpufreq subsystem is

used to set different DVFS settings. Xeon E5620 supports one frequency for each processor.

We disable Hyper-Threading feature. However, prefetching is enabled. The hardware events

selected in the model do not count LLC references and misses due to prefetching, while other

events, which are UNC L3 MISS.ANY (0x309) and UNC L3 HIT.ANY (0x308), count all the

L3 cache accesses.

7.4.2 Experiment setup

We conduct the experiments on an Intel Xeon E5620 server. The specification is listed in

Table 7.4. There is a total of eight frequencies available, from 1600MHz to 2400MHz. We

use NPB and PARSEC benchmark suites to conduct the evaluation. In order to measure the

energy consumption of the workload on the system, we connect a power measurement device,

Watt’s Up Pro, between the power outlet and the server. Watt’s Up Pro is able to record power

dissipation of the entire system at a frequency of 1Hz. It is connected to the system with a

serial port. Watt’s Up averages power measurements inside one second interval, so that it is

safe to use power readings and execution time to calculate total energy consumption.

7.4.3 Speedup Model Evaluation

In this section, we evaluate the accuracy of the proposed speedup model. The input of the

model is the information collected from the execution using two threads of the workload. The

output is the estimated execution time of different configurations.

Figure 7.3 shows the serial portion of a workload in terms of absolute execution time and

percentage to the entire execution time using eight threads. All of the tested benchmarks from

NPB demonstrate less than 2% serial portion; while PARSEC benchmark suite contains various

serial execution phases, ranging from 3% to 87% of total execution time. The serial portion



www.manaraa.com

128

System component Configuration
CPU Intel Xeon E5620

Microarchitecture Nehalem

Processor core Westmere-EP

L1 cache
4 × 32KB I cache

4 × 32KB D cache

L2 cache 4 × 256KB

L3 cache 12MB

Frequency 2400MHz

Number of sockets 2

Num of cores per chip 4

Num of threads per chip 8

Total num of threads 16

Kernel version Linux 2.6.31

Table 7.4: System specification.
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Figure 7.3: Serial portion of the workload

limits the speedup that can be achieved for raytrace benchmark, particularly.

Regarding the parallel part, in order to obtain a more accurate prediction, we separate

the workload into different categories and train benchmarks for each category. This way, we

can obtain the parameters described in Equation 7.6 as shown in Table 7.5. Conf refers to

the concurrency level and thread mapping strategy used. Ctgy stands for the categories men-

tioned in Section 7.3.1. The threshold δ is set to be 2362346 references/sec. γ is used to

describe the stall portion. In the case that all four cores are used, namely configuration (1,4)

and (2,8), we can observe that the serial setting does not contribute much to the predicted re-

sults as other configurations, such as (1,2). As the configuration becomes complicated, the



www.manaraa.com

129

Conf Ctgy α β γ ε

(1,2)
1 -1422.02 16638.10 1.15 -3.37E+10

2 -1362.78 17921.22 1.02 -2.36E+10

(1,4)
1 118181.23 -99645.46 0.35 6.80E+10

2 -7743.71 179178.05 -0.35 -3.64E+11

(2,2)
1 6327.38 -6849.06 0.95 4.30E+09

2 -921.27 22574.88 0.72 -4.80E+10

(2,4)
1 55261.26 -46362.25 0.70 3.28E+10

2 -5828.06 130347.17 -0.11 -2.78E+11

(2,8)
1 186966.68 -149787.96 0.11 8.73E+10

2 -7333.23 154658.47 0.42 -2.68E+11

Table 7.5: Parameters obtained for the speedup model.

architectural meaning of each parameter diminishes. The reason is because our model only

samples the activities of a small portion of the whole system to maintain its applicability.

In addition, there are only at most four performance event registers on the state of the art

micro-architectures [63], which means only four events can be simultaneously sampled with-

out multiplexing counter registers. Our model uses all four counters, namely LLC references,

LLC misses, UPOS EXECUT ED ACT IV E CYCYCLES, and UOPS ISSUED.ANY . The to-

tal UnHalted Cycles are calculated from execution time and CPU frequencies.

Table 7.6 illustrates the percentage of stall cycles in the two thread execution of each bench-

mark. The percentage of stalls is one of the workload characteristics we discussed in Sec-

tion 7.3.1. If the percentage of stalls is less compared with the computation part, there is more

chance that the benchmark speedup is linear. It is easy to observe that both bt.A, ft.B, ep.C,

and lu.B exhibit only small percentage of stall cycles in the whole execution. The speedup

of all the benchmarks can be observed from Figure 7.4 and Figure 7.5. At the configuration

where all eight cores are used, ep.C reaches highest speedup factor, which is 7.60, followed

by is.C, which shows 6.45. ft.B and lu.B, however, only speedup 5.63 and 5.45, respectively,

if all the eight cores are used. The reason is because these two benchmarks show higher LLC

references and LLC misses rates, which are 12 times and 2.5 times on average compared with

ep.C and bt.A. As a result, the speedup is limited even though the percentage of stall is only

approximately 20% in the configuration of (2,2).
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Figure 7.4: Measured execution time vs. predicted execution time. The unit is in second. X-

axis represents each configuration. For example, (1,2) stands for one processor and totally two

threads are used.

As Figure 7.4 shows, in general the prediction results are more accurate when there are

less threads. If all eight cores are used, the average prediction error is 12% compared with the

average prediction error in the configuration (1,2) is 8%. The serial portion of f erret workload

has great variation when all 8 cores are enabled. Specifically, the average waiting time for each

thread increases from around 2 seconds to 10 seconds for this particular configuration. The rea-

son is probably because the interplay of condition variables. Regarding raytrace benchmark, it

has a large portion of serial workload, around 90 seconds, which is the reason why the speedup

is restricted.
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Benchmark Executed Cycles Stall Cycles
Percentage

of stall

bt.A 205174317772 24536512493 11%

ft.B 168308642166 18113150861 10%

cg.C 591537183631 493396017764 45%

ep.C 632521811986 168804009044 21%

is.C 66076806330 53651429567 45%

lu.B 587449954695 132446913274 18%

sp.B 496368059294 154413417994 24%

Table 7.6: Percentage of stall in the configuration of (2,2).
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Figure 7.5: The predicted speedup factor using different concurrency levels and thread mapping

strategies.

7.4.4 Power Model Evaluation

Power estimation is shown in Figure 7.6. The estimation of power dissipation is a challeng-

ing task because of the following reasons: first, the model that we propose does not consider

the other components such as motherboards. Those parts are not the major concern of this

chapter. However, we measure the whole system power; second, the PMCs used in the model

are limited. Basically, only four hardware counter registers are available on Xeon E5620 to be

sampled simultaneously. The power model uses four of them, namely LLC references, LLC

misses, executed cycles, and upos issued. The average prediction error is 8%. We are able to

control the prediction error rate to a relative low level by using only four counters in the predic-

tion model because the idle power for the platform is about 143W, which is a large portion of

the whole system. In addition, since serial portion of the workload occupies a certain amount

of the the power dissipation for PARSEC benchmarks, they consumes less power compared
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Figure 7.6: Measured power dissipation vs. predicted power dissipation. The unit is in watt.

X-axis represents one configuration. For example, (1,2) stands for one processor and totally

two threads are used.

with that of NPB benchmarks and are less complicated to predict.

Combining execution time prediction and power dissipation prediction, we are able to cal-

culate the total predicted energy and then determine the most energy efficient configuration.

From Figure 7.7, we can observe that our prediction model is able to accurately predict the

most energy efficient configuration for each benchmark, which for most of the tested bench-

marks is the configuration that uses all eight cores. This result is different from the observation

in [30]. The reason is because E5620 uses a shared L3 cache that handles most of the data ac-

cess of four cores allocated on one socket. This design reduces LLC misses and increases the

throughput of the whole system. The extra power dissipation added by this part is negligible

compared with the performance gain. One exception is raytrace benchmark. Increasing the
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Figure 7.7: Measured energy consumption vs. predicted energy consumption. The unit is in

Joule. X-axis represents one configuration. For example, (1,2) stands for one processor and

totally two threads are used.

number of threads does not have great impact on the speedup and adds extra energy for the

execution because the serial portion of the workload dominates. As a result, using four threads

and one processor can produce optimal energy efficiency. However, if Intel Hyper-Threading

Technique is enabled and all 16 logical cores are available, we can observe that the benefit

diminishes. For FT, SP and vips benchmarks, using more logical cores do not reduce the total

energy consumption. But including simultaneous multi-threading in the model is our future

work since some of the PMCs can only measure per core events not per thread, which makes

the training process obscure.
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7.4.5 Run-time DVFS Evaluation

Based on the prediction model in the previous section, we are able to select the optimal

configuration for the benchmarks. In the next step, we use run-time PMCs information to

predict program phases and select an appropriate frequency level for each phase. Normally,

DVFS is only available for a entire processor if only one power domain is designed for the

processor.

Figure 7.8 illustrates the additional Energy-Delay Product (EDP) obtained from the the run-

time DVFS scheme. The results obtained from the first step uses the maximum CPU frequency.

By applying a run-time DVFS scheme we are able to achieve additional energy savings. CG

is the most memory-bounded benchmark in the test. It has the largest LLC reference rate and

LLC miss rate. The total EDP obtained for CG benchmark is around 24%. On the contrary, no

additional saving can be obtained for EP benchmark. f reqmine benchmark produces maximum

EDP saving among PARSEC benchmarks. The reason is because it has a large working set size

and frequent data sharing, which produces CPU slacks. The average percentage of EDP saving

is 10%. Though there is more CPU idle time during the execution of PARSEC benchmarks,

for example, there is as much as 90 second idle time for a CPU when executing raytrace

benchmark, the energy savings achieved by using DVFS is limited. The reason is because

DVFS does not impact power dissipation much during the CPU idle. For instance, the system

idle power is around 137W for the tested platform when it either operates at its maximum or

minimum frequency. Another method that guides CPUs to enter a deeper sleep mode is needed

in order to achieve more energy savings for similar benchmarks.

In order to compare the proposed DVFS scheme and the optimal solution, we apply a brute-

force approach to obtain the optimal voltage/frequency for each phase by applying all possible

settings. Because we set the sample interval relative large, the number of phases is limited.

Figure 7.9 shows the EDP of different benchmarks using the proposed scheme compared with

the optimal settings. ep.C benchmark is distinguished from others because the phases are
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Figure 7.8: Additional EDP using run-time DVFS when the optimal configuration generated

from the first step is used. The results are compared to the setting that uses maximum frequency

only.

very easy to predict and simply setting the CPU frequency to maximum produces the most

energy efficiency solution. Other benchmarks exhibit different characteristics, for example, FT

benchmark has various phases and exhibits to be memory-bounded in most of its phases (it has

the third largest LLC miss rate, which is 3785337 misses/sec). Phases change frequently in

FT benchmark. As a result, FT benchmark spends most of its execution time in the maximum

frequency level. CG benchmark, although has the largest LLC reference and LLC miss rate, is

supposed to spends most of the time on the second minimum frequency, which is not captured

by our proposed model. The prediction model simply sets the frequency of each phase in CG

benchmark to minimum frequency all the time. The average gap between the results produced

by our approach to the optimal solution is around 5%.

The inaccuracy of the prediction model stems from the following causes. First, the phase

prediction model is relatively simple in our implementation. We use a last value prediction

algorithm, which performs well if the phase of a workload is stable. Second, one of the as-

sumptions in our two step scheme is that the LLC and memory bandwidths are independent

from the CPU operating frequency and the number of threads. In reality, a slight drop in band-

width occurs on the target platform [118].
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Figure 7.9: Comparing the proposed run-time DVFS adjusting algorithm to the optimal solu-

tion in terms of EDP saving. Optimal solution uses an off-line brute-force approach to obtain

the optimal frequency for each phase.

7.5 Related work
Different speedup models are proposed to analyze the architecture and program insights

of multi-core systems. Kim et al. propose an approach that predicts potential speedup from

sequential execution [78]. Theoretical analysis of speedup of workloads on modern symmetric

and asymmetric is provided in [144]. However, those works do not consider the problem from

an energy efficiency perspective. Power aware environment is considered in building speedup

models recently. Ge and Cameron [44] propose a power-aware speedup model that is derived

from Amdahls Law [4]. The proposed scheme divides parallel workload into two major parts,

which include on-chip and off-chip parts. In addition, each one of them can be categorized as

two subclasses, one of which is affected by DVFS and the other is not. However, the authors
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do not propose methods to predict speedup practically based on the model.

Combining power aware features of a system and parallel workload characteristics, Curtis-

Maury et al. proposed a multi-dimensional prediction model that uses DCT and DVFS. This

work is similar to our approach [30]. However, the method is based on empirical models to

predict concurrency level that lack architectural insights, which limit the applicability of the

proposed model. For example, different micro-architecture might use different empirical pa-

rameters. Ge et al. propose an analytical model to analyze the energy efficiency issue using

a speedup and power model [45]. The proposed work is verified by case studies. The major

difference between the proposed work and [45] is that they focus on analysis while we focus on

prediction. Saravanan et al. simulates different power features according to the processor char-

acteristics, such as out-of-order execution [115]. However, they did not consider the workloads

and their requirements.

Estimating power dissipation using PMCs is one of the most important topics in HPC

because the estimated results can be used for peak power control and thermal management.

Joseph and Martonosi propose one of the earliest works on estimating power dissipation using

Performance Monitoring Counters (PMCs) [72]. Goel et al. propose a method to [49] estimate

system power dissipation of different architectures. The results show that applying a differ-

ent set of PMCs according to architectural characteristics produces better estimation accuracy.

These methods, however, do not consider the energy efficiency of a workload.

Adjusting DVFS according to program phases is an effective method to reduce energy con-

sumption given a performance metric. One of the most effective methods is scaling down the

CPU voltage and frequency during the memory intensive phases. Isci et al. introduce a pre-

diction model of a memory intensive phases during a program’s execution [66]. Spiliopoulos

et al. propose a Green Governor that utilizes the slacks in memory-bounded applications to

save energy with limited performance loss [127]. The key difference between the proposed

approach and the aforementioned approaches is that our approach concerns the scalability of
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workloads.

Tuning memory modes to achieve memory savings is also considered to be an effective

way. Deng et al. propose MemScale which enables DVFS on Memory Controller and DFS on

Memory Channels to explore dynamic energy saving [33]. Other than using dynamice tuning,

Liu et al. changes memory refresh rate of less important data in memory while keeping regular

refreshing rate for important data [86] to achieve energy saving. Wu et al. propose a bank

level controller for memory subsystem that predicts data locality and groups relevant pages

togather [141]. However, the hardware techniques on the memory subsystem are not available

yet.

7.6 Summary
We achieved the fifth objective in this chapter. Specifically, we propose a practical ana-

lytical prediction model that produces energy efficient configurations for parallel workloads.

The first step of the model uses execution information of configuration (2,2) and system ar-

chitecture information to produce the optimal concurrency level and thread mapping strategy

by predicting the potential speedup and average power dissipation. DVFS technique is used in

the second step to adjust CPU voltage/frequency at run-time to further reduce the energy con-

sumption. NPB OMP and PARSEC benchmark suites are used to evaluate the proposed work.

The experimental results based on a Intel E5620 platform shows that the proposed model is

able to accurately predict the optimal energy efficiency configuration in the first step. The sec-

ond step further reduces energy consumption for the configuration obtained from the first step.

The average EDP saving is 10%. An off-line optimal solution calculated to compare with the

proposed scheme shows that the average extra EDP obtained by optimal solution is within 5%.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In summary, we have successfully achieved all suggested research goals. Tools and models

are designed and implemented to fill the needs of power/energy-efficient design in computer

systems. Specifically, we proposed the following five items focusing on software workload

power analysis and optimization.

1. First, in the study of analyzing component power dissipation of a computer system, we

use two experiment platforms of different period (PC05 and PC10) to measure the power

dissipation of several main components of these two computer systems. The decreasing

of static power dissipation and large portion of dynamic CPU power dissipation lead us

to the study dynamic power dissipation of software/workload in a computer system.

2. In revealing the dynamic power dissipation in association with workload execution, we

present a novel practical power modeling method based on performance monitoring

counters (PMCs) by employing one PMCs o recent multicore processors. The proposed

model can be used to generate power dissipation information of a workload, which will

be used for various tasks. For example, we estimate the power dissipation in CPT using

the proposed power model. Based on the model, we design and implement SPAN to map

the run-time power dissipation to application functions.

3. In the practice of applying power analyzing model to resource-limited systems, such

as embedded systems, we propose a function level power profiling tool, Safari, which

produces function level profiling with limited overhead (on average 16% overhead if

maximum one sample is collected for each function). It can be used to connect applica-

tion activities to hardware for energy-efficient design, such as application aware power

management and fine-grained scheduling. By designing and implementing Safari, we
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are able to achieve similar functionalities in terms of power dissipation as gprof does for

performance profiling.

4. In the study of relationship between energy consumption of a workload and the system

configurations, we propose a general CPT model to analyze the system energy efficiency

for a given workload. We show three case studies to illustrate how to use CPT model to

analyze different techniques. The CPT model provides a general abstraction for parallel

workload in terms of energy efficiency. Based on the model, we exam the effects of alter

each one of them, which leads us to the optimization process in the next item.

5. In design and implement workload-aware energy efficiency strategies, we propose a prac-

tical analytical prediction model that produces energy efficient configurations for parallel

workloads. The first step of the model uses execution information of configuration (2,2)

and system architecture information to produce the optimal concurrency level and thread

mapping strategy by predicting the potential speedup and average power dissipation.

DVFS technique is used in the second step to adjust CPU voltage/frequency at run-time

to further reduce the energy consumption. NPB OMP and PARSEC benchmark suites

are used to evaluate the proposed work. The experimental results based on a Xeon E5620

server with NPB and PARSEC benchmark suites show that the model is able to predict

the energy efficient configuration accurately for 100% tested benchmarks. An additional

10% EDP saving is obtained by using run-time DVFS on average for the entire system.

An off-line optimal solution is used to compare with the proposed scheme. The exper-

imental results using seven parallel benchmarks show that the average extra EDP saved

by the optimal solution is within 5%.

In this work, however, we only concentrate on the primary part of the whole system, CPUs.

The other components need to be analyzed from different angles. For example, hard disk

drive is a typical unsynchronized component, which requires other techniques to analyze its

power dissipation. The power dissipation of the workload is closely related to the underling
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hardware and system configuration. In addition, the workload in industry are different from

those in a research environment. First of all, the complexity of real workload is usually one

or two order of magnitude bigger in size. In order to profile program at this scale, we usually

utilize divide-and-conquer method to analyze the program part by part. Moreover, modular

design is the common approach used to develop large scale programs. The easiest way to use

divide-and-conquer is to profile functions in each module separately. This can be achieved

using Safari to link to the interested modules. One of the most important difference is that

commercial applications usually have “small functions”. For instance, the execution of most

of functions is less than 100ms. While academic benchmarks usually contains functions with

“big body”, which makes profiling much easier. In order to implement a function level power

analyzer that can be applied to commercial applications, a profiler at least has to leverage the

aforementioned points. Regarding the design of power efficiency software, in most cases, the

power overhead introduced by performance improvement (improved performance usually uses

more system resources, such as prefetch) is not a dominate factor when calculate the overall

efficiency. We argue that it might make more sense to tune system component power states

based on the software workload.

In the future, it becomes more and more important to provide a off-chip power-resource

usage model that models the cache and memory usage. We use benchmarks to estimate the

data demand for each workload. Incorporating the characteristics of bandwidth information in

the analytical model can improve the applicability of the proposed CPT model. The current

work does not consider the Simultaneous Multithreading(SMT) [117]. For example, if Hyper-

Threading is enabled on Xeon E5620, the speedup model and power model need to be revisited.

In addition, a finer granularity of DVFS tuning is possible to captures more detailed execution

phases, which probably will generate more energy savings but with more introduced overhead.

In conclusion, most existing approaches do not expose sufficient information. As a result,

formation scarcity of dynamic power dissipation impedes the progress of power-efficient soft-
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ware design. The challenge is that there is a gap between the power dissipation of hardware and

the applications running on it. In order to design more power/energy efficient systems, both

software and hardware need to work in a close loop, which adaptively alter itself according to

demand of the other part.
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Among all the factors in sustainable computing, power dissipation and energy consump-

tion, arguably speaking, are fundamental aspects of modern computer systems. Different from

performance metric, power dissipation is not easy to measure because hardware instrumenta-

tion is usually required. Yet as an indispensable component of a computer system, software

becomes a major factor affecting power dissipation besides hardware energy-efficiency and

power states. With detailed information on resource usage and power dissipation of an appli-

cation/software, software developers will be able to leverage algorithms and implementations

in order to produce power-efficient solutions. Hardware instrumentation, despite its accuracy,

is costly and complicated to set up. A general solution to connect software with hardware along

with detailed power and system information will improve the system overall efficiency.

In this work, we design and implement a general solution to analyze and model software

power dissipation. Based on the analysis, we propose a combined solution to optimize the en-

ergy efficiency of parallel workload. Starting from the hands-on power measurement method

in detail, we provide a fine-grain power profile of two computer systems using hardware in-

strumentation. Being focusing on dynamic power dissipation analysis, we propose a two-level

power model for power-aware multicore computer systems. Based on the model, we design

and implement SPAN to relate power dissipation to the different portions of an application
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using the proposed power model. By using SPAN, developers can easily identify the sections

of code consuming the most power in the program. Alternatively, to enable automatic source

code instrumentation, we utilize compiler techniques to insert profiling code before and after

each function in source code. The expected outcome includes an open source function level

power profiling tool, Safari. Using the profiling tools, we propose a model to capture the

relationship between concurrency (C), power (P) and execution time (T ). By changing the sys-

tem configuration for different parallel workload, we are able to achieve optimal/near optimal

energy-efficient execution of a given workload on a specific platform.
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